A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial aco...A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.展开更多
This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with high...This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.展开更多
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures ...Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.展开更多
The transmission equation of microdisk resonator is obtained by the transfer matrix method.The physical model is built and the electric field distribution,output spectrum and phase of the microdisk resonator are simul...The transmission equation of microdisk resonator is obtained by the transfer matrix method.The physical model is built and the electric field distribution,output spectrum and phase of the microdisk resonator are simulated by three-dimensional finite element software.The influence of the structural parameters on transmission characteristics and the temperature sensing property of the microdisk resonator are studied deeply.The results show that the output spectrum will change significantly with the distance between the microdisk and the straight waveguide within a certain range but there is no apparent change in the phase of the output port.The extinction ratio and maxima sensitivity of the device will reach 30 dB and 45 pm/℃,respectively.Microdisk has higher integration,higher quality factor and wider free spectral range compared with common microring resonator.展开更多
The W(18)O(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W...The W(18)O(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W(18)O(49) nanoflowers).With a 976 nm laser diode(LD) as an excitation source, the selectively green upconversion luminescence(UCL) is observed to be enhanced by two orders of magnitude in Er-Yb: NaYF4/W(18)O(49) nanoflowers heterostructures. It suggests that the near infrared(NIR)-excited localized surface plasmon resonance(LSPR) of W(18)O(49) is primarily responsible for the enhanced UCL, which could be partly reabsorbed by the W(18)O(49), thus leading to the selective enhancement of green UCL for the Er-Yb: NaYF4. The fluorescence intensity ratio is investigated as a function of temperature based on the intense green UCL, which indicates that Er-Yb: NaYF4/W(18)O(49) nanoflower heterostructures have good potential for developing into temperature sensors.展开更多
Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal t...Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.展开更多
In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method ...In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s.展开更多
The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrin...The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrinkage polyester filaments.And the fabric was treated by a self-designed partial heat device,which can make the sensor be fixed in the fabric.The effects of yarn type,yarn linear density,fabric warp density,fabric structure,fabric layer numbers where the sensor is located,and the ambient temperature on the temperature measured value were investigated.The results demonstrated that when the higher thermal conductivity of yarns and lower density yarns were applied in the fabric as rawmaterials,they were favored to improve the measurement precision.Meanwhile,there were many factors that could make the measured values closer to the real value of the body,such as the plain fabric,the increased warp density of the fabric,the multiple-layer fabric where the sensor was located,the raised ambient testing temperature and the prolonged test time in the certain range.展开更多
Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designe...Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designed by author is used for realtime operational monitoring sea-ice, SST, oceanic current and colours and characters of land surface. This software system processes quantitative AVHRR data from NOAA satellite to calculate calibration coefficient, solar angle correction, earth location parameter and atmospheric attenuation correction, then SST field will be produced through calculation using special SST model, and top-quality of colour composite imagery of satellite with variable spacial resolution (1, 2 or 5km) will be produced via image processing. Inside front covor Figure 1 is colour enhanced imagery with 5km resolution of NOAA satellite in offshore展开更多
Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study...Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study,the perovskite-structured KZnF_(3)is utilized as a host material for Er^(3+)to achieve a high-purity upconversion(UC)red emission.The observed Stark splitting of the red emission peak provides evidence of the energy level splitting of Er^(3+).Group theory is employed to decompose the spectral branching of Er^(3+)under the point group symmetry of KZnF_(3),allowing for the derivation of Stark splitting energy levels induced by the crystal field effect.The optical temperature-sensing behavior of the red UC luminescence was investigated,specifically examining the FIR of the splitting sub-peaks,which exhibited an exponential relationship with temperature.The KZnF_(3):Yb^(3+),Er^(3+)demonstrated a relative sensitivity(S_(r))of 0.00182%·K^(-1)at 298 K,highlighting its excellent response to temperature.Ex vivo bio-thermometry experiments conducted on chicken breast validated the material's ability to penetrate biological tissues and showed its significant sensitivity of the FIR to temperature.These results establish KZnF_(3):Yb^(3+),Er^(3+)as a promising material for optical thermometry in various biological applications.展开更多
The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error ...The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.展开更多
The effects of carbon nanoparticle(CNP)on rice variety Swarna(MTU7029)were investigated.CNP induced effects similar to shade avoidance response(SAR)of Arabidopsis,with increase in shoot length,root length,root number,...The effects of carbon nanoparticle(CNP)on rice variety Swarna(MTU7029)were investigated.CNP induced effects similar to shade avoidance response(SAR)of Arabidopsis,with increase in shoot length,root length,root number,cotyledon area,chlorophyll content and total sugar content in rice seedlings.In mature plants,CNP treatment resulted increase in plant height,number of productive tillers per plant,normalized difference vegetation index,quantum yield and root growth.A total of 320 mg of CNP per plant administered in four doses resulted in improved grain traits such as filled grain rate,100-grain weight,grain length/width ratio,hulling rate,milling rate and head rice recovery.Seeds from the CNP-treated plants showed increase in amylose,starch and soluble sugar contents compared to controls.Strikingly,CNP treatment showed an average of 17.5%increase in yield per plant.Upon investigation to the molecular mechanism behind CNP induction of SAR,a significant downregulation of phytochrome B transcript was found.Decrease in perception of red wavelengths led to responses similar to SAR.Increase in plant’s internal temperature by 0.5ºC±0.1ºC was recorded after CNP treatment.We suggest that the internalized CNP aggregates may serve to absorb extra photons thereby increasing the internal temperature of plants.Phytochrome B accounts the hike in internal temperature and initiates a feed-back reduction of its own transcription.We suggest that moderate SAR is beneficial for rice plants to improve agronomic traits and yield.It presents a potential non-transgenic method for improving rice yield by CNP treatment.展开更多
Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of t...Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.展开更多
Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other ...Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.展开更多
Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has gen...Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm^(3+) to Gd^(3+)ion.Characteristic emission bands from Tm^(3+) are also observed in both the phosphors.Thermally coupled Stark sublevels ^(1)G_(4(a))(476 nm) and ^(1)G_(4(b))(488 nm) of Tm^(3+) ion were utilised for optical thermometry using fluorescent intensity ratio(FIR) method.The result shows that maximum absolute sensitivity in tridoped phosphor is observed to be 1.33 × 10^(-3) K^(-1) at 298 K.Moreover,temperature rise of phosphor at various pump power densities was also measured and it is estimated to achieve 407 K at the pump power density of 38.46 W/cm^(2).展开更多
In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly...In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications.展开更多
Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health.As an emerging component of two-dimensional materials,layered metal dichalcogenides are gaining s...Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health.As an emerging component of two-dimensional materials,layered metal dichalcogenides are gaining significant attention due to their unique physical and chemical properties,thus catering well to the gas sensing application.Particularly,tin disulfide(SnS_(2))has been widely examined recently owing to its low-cost,earth-abundant,and environmental friendliness features,which meet the requirements of advanced sensing platforms.Herein,the booming research advancements of SnS_(2)-based gas sensors have been presented.Firstly,the basic attributes of SnS_(2) and its ability to detect various hazardous gases are introduced.Secondly,innovative approaches that have demonstrated the effectiveness of improving the room temperature sensing performance of SnS_(2) are summarized.Finally,the major challenges and future opportunities of SnS_(2) are also outlined.It is ultimately expected that this timely review could offer guidance for designing high-performance gas sensing materials and further push forward their potential applications.展开更多
Three interferometers(the Sagnac sensor,the linear polarization interferometer,and the reflecting polarization interferometer)incorporated with the bow tie fiber are proposed to detect the seawater temperature.Bow tie...Three interferometers(the Sagnac sensor,the linear polarization interferometer,and the reflecting polarization interferometer)incorporated with the bow tie fiber are proposed to detect the seawater temperature.Bow tie fiber,a kind of polarization maintaining fiber,has stress induced birefringence.The three interferometers are categorized as transmission and reflection types to analyze the sensing principles.Related experiments are performed to explore the influence of the wavelength and length of the bow tie fiber on the sensitivity and free spectral range(FSR).The sensitivity and FSR both increase with the wavelength increasing.The sensitivity fluctuates in a small range and FSR decreases with the length increasing.The reflecting polarization interferometer has the bigger sensitivity of–1.19 nm/℃than the other two.And it has the advantages of easy fabrication,simple operation,and good stability,so it is applicable in real ocean exploration.Our work can provide a reference to researchers who do oceanographic research.展开更多
In this paper,we propose a temperature-sensing scheme utilizing a passively mode-locked fiber laser combined with the beat frequency demodulation system.The erbium-doped fiber is used in the laser ring cavity to provi...In this paper,we propose a temperature-sensing scheme utilizing a passively mode-locked fiber laser combined with the beat frequency demodulation system.The erbium-doped fiber is used in the laser ring cavity to provide the gain and different lengths of single-mode fibers inserted into the fiber ring cavity operate as the sensing element.Different temperature sensitivities have been acquired in the experiment by monitoring the beat frequency signals at different frequencies.The experimental results indicate that the beat frequency shift has a good linear response to the temperature change.The sensitivity of the proposed sensor is about-44 kHz/℃ when the monitored beat frequency signal is about 10 GHz and the ratio of the sensing fiber to the overall length of the laser cavity is 10 m/17.5 m,while the signal-to-noise ratio(SNR)of the monitored signal is approximately 30 dB.The proposed temperature-sensing scheme enjoys attractive features such as tailorable high sensitivity,good reliability,high SNR,and low cost,and is considered to have great potential in practical sensing applications.展开更多
基金supported by the Na-tional Natural Science Foundation of China(Nos.62175105,61875086)Fundamental Research Funds for the Cen-tral Universities of China(No.ILB240041A24)。
文摘A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.
基金the financial support from Zhuzhou Times New Material Technology Co.LtD.(Grant No.XCFDJS-2022-00004495)Chilean National Agency for Research and Development(Basal FB0008).
文摘This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
文摘Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.
基金National Natural Science Foundation of China(No.61762057)Natural Science Foundation of Gansu Province(No.18JR3RA123)。
文摘The transmission equation of microdisk resonator is obtained by the transfer matrix method.The physical model is built and the electric field distribution,output spectrum and phase of the microdisk resonator are simulated by three-dimensional finite element software.The influence of the structural parameters on transmission characteristics and the temperature sensing property of the microdisk resonator are studied deeply.The results show that the output spectrum will change significantly with the distance between the microdisk and the straight waveguide within a certain range but there is no apparent change in the phase of the output port.The extinction ratio and maxima sensitivity of the device will reach 30 dB and 45 pm/℃,respectively.Microdisk has higher integration,higher quality factor and wider free spectral range compared with common microring resonator.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474046 and 61775024)the Program for Liaoning Innovation Team in University,China(Grant No.LT2016011)+1 种基金the Science and Technique Foundation of Dalian,China(Grant Nos.2017RD12 and 2015J12JH201)the Fundamental Research Funds for the Central Universities,China(Grant No.DC201502080203)
文摘The W(18)O(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W(18)O(49) nanoflowers).With a 976 nm laser diode(LD) as an excitation source, the selectively green upconversion luminescence(UCL) is observed to be enhanced by two orders of magnitude in Er-Yb: NaYF4/W(18)O(49) nanoflowers heterostructures. It suggests that the near infrared(NIR)-excited localized surface plasmon resonance(LSPR) of W(18)O(49) is primarily responsible for the enhanced UCL, which could be partly reabsorbed by the W(18)O(49), thus leading to the selective enhancement of green UCL for the Er-Yb: NaYF4. The fluorescence intensity ratio is investigated as a function of temperature based on the intense green UCL, which indicates that Er-Yb: NaYF4/W(18)O(49) nanoflower heterostructures have good potential for developing into temperature sensors.
基金Supported by the National Natural Science Foundation of China (50375026,50375028)
文摘Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.
基金Project supported by the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.2008CG47)the Cultivation Foundation of the Key Scientific and Technical Innovation Project (Grant No.708041)+2 种基金the Research Foundation for the Doctoral Program of Higher Education Ministry of Education of China (Grant No.20093108120017)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Natural Science Foundation of Shanghai Municipality (Grant No.09ZR1412200)
文摘In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s.
基金Hubei Province Natural Science Fund Project,China(No.2013CFA090)
文摘The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrinkage polyester filaments.And the fabric was treated by a self-designed partial heat device,which can make the sensor be fixed in the fabric.The effects of yarn type,yarn linear density,fabric warp density,fabric structure,fabric layer numbers where the sensor is located,and the ambient temperature on the temperature measured value were investigated.The results demonstrated that when the higher thermal conductivity of yarns and lower density yarns were applied in the fabric as rawmaterials,they were favored to improve the measurement precision.Meanwhile,there were many factors that could make the measured values closer to the real value of the body,such as the plain fabric,the increased warp density of the fabric,the multiple-layer fabric where the sensor was located,the raised ambient testing temperature and the prolonged test time in the certain range.
文摘Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designed by author is used for realtime operational monitoring sea-ice, SST, oceanic current and colours and characters of land surface. This software system processes quantitative AVHRR data from NOAA satellite to calculate calibration coefficient, solar angle correction, earth location parameter and atmospheric attenuation correction, then SST field will be produced through calculation using special SST model, and top-quality of colour composite imagery of satellite with variable spacial resolution (1, 2 or 5km) will be produced via image processing. Inside front covor Figure 1 is colour enhanced imagery with 5km resolution of NOAA satellite in offshore
基金financially supported by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)"Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province。
文摘Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study,the perovskite-structured KZnF_(3)is utilized as a host material for Er^(3+)to achieve a high-purity upconversion(UC)red emission.The observed Stark splitting of the red emission peak provides evidence of the energy level splitting of Er^(3+).Group theory is employed to decompose the spectral branching of Er^(3+)under the point group symmetry of KZnF_(3),allowing for the derivation of Stark splitting energy levels induced by the crystal field effect.The optical temperature-sensing behavior of the red UC luminescence was investigated,specifically examining the FIR of the splitting sub-peaks,which exhibited an exponential relationship with temperature.The KZnF_(3):Yb^(3+),Er^(3+)demonstrated a relative sensitivity(S_(r))of 0.00182%·K^(-1)at 298 K,highlighting its excellent response to temperature.Ex vivo bio-thermometry experiments conducted on chicken breast validated the material's ability to penetrate biological tissues and showed its significant sensitivity of the FIR to temperature.These results establish KZnF_(3):Yb^(3+),Er^(3+)as a promising material for optical thermometry in various biological applications.
文摘The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.
基金supported by the Department of Science and Technology,Women Scientist Scheme-A in India(Grant No.SR/WOS-A/LS-369/2018)Science Engineering Research Board,Young Scientist Start-Up Grant in India(Grant No.YSS-2015-000659)+1 种基金Department of Science and Technology,Science Engineering Research Board,India(Grant No.EMR/2014/000533)Department of Atomic Energy,National Institute of Science Education and Research in India.
文摘The effects of carbon nanoparticle(CNP)on rice variety Swarna(MTU7029)were investigated.CNP induced effects similar to shade avoidance response(SAR)of Arabidopsis,with increase in shoot length,root length,root number,cotyledon area,chlorophyll content and total sugar content in rice seedlings.In mature plants,CNP treatment resulted increase in plant height,number of productive tillers per plant,normalized difference vegetation index,quantum yield and root growth.A total of 320 mg of CNP per plant administered in four doses resulted in improved grain traits such as filled grain rate,100-grain weight,grain length/width ratio,hulling rate,milling rate and head rice recovery.Seeds from the CNP-treated plants showed increase in amylose,starch and soluble sugar contents compared to controls.Strikingly,CNP treatment showed an average of 17.5%increase in yield per plant.Upon investigation to the molecular mechanism behind CNP induction of SAR,a significant downregulation of phytochrome B transcript was found.Decrease in perception of red wavelengths led to responses similar to SAR.Increase in plant’s internal temperature by 0.5ºC±0.1ºC was recorded after CNP treatment.We suggest that the internalized CNP aggregates may serve to absorb extra photons thereby increasing the internal temperature of plants.Phytochrome B accounts the hike in internal temperature and initiates a feed-back reduction of its own transcription.We suggest that moderate SAR is beneficial for rice plants to improve agronomic traits and yield.It presents a potential non-transgenic method for improving rice yield by CNP treatment.
基金financial support from the National Natural Science Foundation of China(11672153,11232008,and11227801)
文摘Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.
基金supported by the Australian Research Council (ARC) Discovery Project.
文摘Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.
基金supported by the DST-SERB,New Delhi,India (EMR/000228/2017)TEQIP-Ⅲ,Ministry of Education,Government of India。
文摘Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm^(3+) to Gd^(3+)ion.Characteristic emission bands from Tm^(3+) are also observed in both the phosphors.Thermally coupled Stark sublevels ^(1)G_(4(a))(476 nm) and ^(1)G_(4(b))(488 nm) of Tm^(3+) ion were utilised for optical thermometry using fluorescent intensity ratio(FIR) method.The result shows that maximum absolute sensitivity in tridoped phosphor is observed to be 1.33 × 10^(-3) K^(-1) at 298 K.Moreover,temperature rise of phosphor at various pump power densities was also measured and it is estimated to achieve 407 K at the pump power density of 38.46 W/cm^(2).
基金Project supported by the National Natural Science Foundation of China (11904046,11974069,11504039)。
文摘In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications.
基金financially supported by the Reform and Development Fund Project of Local University supported by the Central Government,the National Natural Science Foundation of China (No.21771060)Heilongjiang Provincial Natural Science Foundation of China (No.LH2023B021)+1 种基金the Basic Scientific Research Expenses of Colleges and Universities in Heilongjiang Province (No.2022-KYYWF-1106)New Era Excellent Master's and Doctoral Dissertations of Heilongjiang Province (No.LJYXL2022-019)。
文摘Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health.As an emerging component of two-dimensional materials,layered metal dichalcogenides are gaining significant attention due to their unique physical and chemical properties,thus catering well to the gas sensing application.Particularly,tin disulfide(SnS_(2))has been widely examined recently owing to its low-cost,earth-abundant,and environmental friendliness features,which meet the requirements of advanced sensing platforms.Herein,the booming research advancements of SnS_(2)-based gas sensors have been presented.Firstly,the basic attributes of SnS_(2) and its ability to detect various hazardous gases are introduced.Secondly,innovative approaches that have demonstrated the effectiveness of improving the room temperature sensing performance of SnS_(2) are summarized.Finally,the major challenges and future opportunities of SnS_(2) are also outlined.It is ultimately expected that this timely review could offer guidance for designing high-performance gas sensing materials and further push forward their potential applications.
基金The authors would like to thank the National Natural Science Foundation of China(Grant No.61871353)and Shandong Provincial Natural Science Foundation(Grant No.ZR2021MF123)for supports.
文摘Three interferometers(the Sagnac sensor,the linear polarization interferometer,and the reflecting polarization interferometer)incorporated with the bow tie fiber are proposed to detect the seawater temperature.Bow tie fiber,a kind of polarization maintaining fiber,has stress induced birefringence.The three interferometers are categorized as transmission and reflection types to analyze the sensing principles.Related experiments are performed to explore the influence of the wavelength and length of the bow tie fiber on the sensitivity and free spectral range(FSR).The sensitivity and FSR both increase with the wavelength increasing.The sensitivity fluctuates in a small range and FSR decreases with the length increasing.The reflecting polarization interferometer has the bigger sensitivity of–1.19 nm/℃than the other two.And it has the advantages of easy fabrication,simple operation,and good stability,so it is applicable in real ocean exploration.Our work can provide a reference to researchers who do oceanographic research.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61975167)。
文摘In this paper,we propose a temperature-sensing scheme utilizing a passively mode-locked fiber laser combined with the beat frequency demodulation system.The erbium-doped fiber is used in the laser ring cavity to provide the gain and different lengths of single-mode fibers inserted into the fiber ring cavity operate as the sensing element.Different temperature sensitivities have been acquired in the experiment by monitoring the beat frequency signals at different frequencies.The experimental results indicate that the beat frequency shift has a good linear response to the temperature change.The sensitivity of the proposed sensor is about-44 kHz/℃ when the monitored beat frequency signal is about 10 GHz and the ratio of the sensing fiber to the overall length of the laser cavity is 10 m/17.5 m,while the signal-to-noise ratio(SNR)of the monitored signal is approximately 30 dB.The proposed temperature-sensing scheme enjoys attractive features such as tailorable high sensitivity,good reliability,high SNR,and low cost,and is considered to have great potential in practical sensing applications.