期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
THE LAYOUT OPTIMIZATION OF STIFFENERS FOR PLATE-SHELL STRUCTURES 被引量:2
1
作者 Chen Suhuan Yang Zhijun 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第4期365-373,共9页
The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the object... The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the objective function with the global stiffness constraint. In the layout optimization, the stiffeners should be placed at the locations with high strain energy/or stress. Conversely, elements of stiffeners with a small strain energy/or stress are considered to be used inefficiently and can be removed. Thus, to identify the element efficiency so that most inefficiently used elements of stiffeners can be removed, the element sensitivity of the strain energy of stiffeners is introduced, and a search criterion for locations of stiffeners is presented. The layout optimization approach is given for determining which elements of the stiffeners need to be kept or removed. In each iterative design, a high efficiency reanalysis approach is used to reduce the computational effort. The present approach is implemented for the layout optimization of stiffeners for a bunker loaded by the hydrostatic pressure. The numerical results show that the present approach is effective for dealing with layout optimization of stiffeners for plate-shell structures. 展开更多
关键词 layout optimization of stiffeners plate-shell structures element sensitivity of strain energy reanaiysis approach
下载PDF
Analysis of Frequency Characteristics and Sensitivity of Compliant Mechanisms 被引量:5
2
作者 LIU Shanzeng DAI Jiansheng +3 位作者 LI Aimin SUN Zhaopeng FENG Shizhe CAO Guohua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期680-693,共14页
Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic condi... Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range. 展开更多
关键词 compliant mechanism pseudo-rigid-body model frequency characteristic sensitivity analysis finite element analysis
下载PDF
Light weight analysis of a skeleton vehicle frame using BS960 super-high-strength steel 被引量:1
3
作者 HAO Xin WANG Yong CAI Zheng 《Baosteel Technical Research》 CAS 2016年第2期40-44,共5页
Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit... Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%. 展开更多
关键词 skeleton vehicle frame finite element analysis dynamic sensitivity analysis BS960 super-high-strength beam steel light weight
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部