In the present paper, we define sensitive pairs via Furstenberg families and discuss the relation of three definitions: sensitivity, F -sensitivity and F -sensitive pairs, see Theorem 1. For transitive systems, we gi...In the present paper, we define sensitive pairs via Furstenberg families and discuss the relation of three definitions: sensitivity, F -sensitivity and F -sensitive pairs, see Theorem 1. For transitive systems, we give some sufficient conditions to ensure the existence of F -sensitive pairs. In particular, each non-minimal E system (M system, P system) has positive lower density ( Fs , Fr resp.)-sensitive pairs almost everywhere. Moreover, each non-minimal M system is Fts -sensitive. Finally, by some examples we show that: (1) F -sensitivity can not imply the existence of F -sensitive pairs. That means there exists an F -sensitive system, which has no F -sensitive pairs. (2) There is no immediate relation between the existence of sensitive pairs and Li-Yorke chaos, i.e., there exists a system (X, f ) without Li-Yorke scrambled pairs, which has κ B -sensitive pairs almost everywhere. (3) If the system (G, f ) is sensitive, where G is a finite graph, then it has κ B -sensitive pairs almost everywhere.展开更多
Letπ:(X,T)→(Y,S)be a factor map between two topological dynamical systems,and F_(a) Furstenberg family of Z.We introduce the notion of relative broken F-sensitivity.Let Fs(resp.Fpubd,Finf)be the families consisting ...Letπ:(X,T)→(Y,S)be a factor map between two topological dynamical systems,and F_(a) Furstenberg family of Z.We introduce the notion of relative broken F-sensitivity.Let Fs(resp.Fpubd,Finf)be the families consisting of all syndetic subsets(resp.positive upper Banach density subsets,infinite subsets).We show that for a factor mapπ:(X,T)→(Y,S)between transitive systems,πis relatively broken F-sensitive for F=Fs or Fpubd if and only if there exists a relative sensitive pair which is an F-recurrent point of(R_(π),T^((2)));is relatively broken Finf-sensitive if and only if there exists a relative sensitive pair which is not asymptotic.For a factor mapπ:(X,T)→(Y,S)between minimal systems,we get the structure of relative broken F-sensitivity by the factor map to its maximal equicontinuous factor.展开更多
基金supported by NSFC (10771079 10871186+5 种基金 11071084 11026095)NSF of Guangdong Province (10451063101006332)supported by NSFC (11001071)Hefei University of Technology (GDBJ2008-024 2010HGXJ0200)
文摘In the present paper, we define sensitive pairs via Furstenberg families and discuss the relation of three definitions: sensitivity, F -sensitivity and F -sensitive pairs, see Theorem 1. For transitive systems, we give some sufficient conditions to ensure the existence of F -sensitive pairs. In particular, each non-minimal E system (M system, P system) has positive lower density ( Fs , Fr resp.)-sensitive pairs almost everywhere. Moreover, each non-minimal M system is Fts -sensitive. Finally, by some examples we show that: (1) F -sensitivity can not imply the existence of F -sensitive pairs. That means there exists an F -sensitive system, which has no F -sensitive pairs. (2) There is no immediate relation between the existence of sensitive pairs and Li-Yorke chaos, i.e., there exists a system (X, f ) without Li-Yorke scrambled pairs, which has κ B -sensitive pairs almost everywhere. (3) If the system (G, f ) is sensitive, where G is a finite graph, then it has κ B -sensitive pairs almost everywhere.
基金Supported by NNSF of China(Grant Nos.12001354,12171298)。
文摘Letπ:(X,T)→(Y,S)be a factor map between two topological dynamical systems,and F_(a) Furstenberg family of Z.We introduce the notion of relative broken F-sensitivity.Let Fs(resp.Fpubd,Finf)be the families consisting of all syndetic subsets(resp.positive upper Banach density subsets,infinite subsets).We show that for a factor mapπ:(X,T)→(Y,S)between transitive systems,πis relatively broken F-sensitive for F=Fs or Fpubd if and only if there exists a relative sensitive pair which is an F-recurrent point of(R_(π),T^((2)));is relatively broken Finf-sensitive if and only if there exists a relative sensitive pair which is not asymptotic.For a factor mapπ:(X,T)→(Y,S)between minimal systems,we get the structure of relative broken F-sensitivity by the factor map to its maximal equicontinuous factor.