In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of c...In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and r c have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and r c affect the deformability;such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality(RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement.展开更多
To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysi...To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.展开更多
In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional co...In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion.Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.展开更多
Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions b...Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.展开更多
The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro- pose an optimal extraction series of these resources during the lifetime of the Mine's maintenance. Fol- lowing...The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro- pose an optimal extraction series of these resources during the lifetime of the Mine's maintenance. Fol- lowing the proposed optimal control model, a sensitivity analysis has been performed that includes the interest rate impact on the optimal solution. This study shows that the increasing of the interest rate sti- mulates faster extraction of the resources. The discounting factor induces that the resource has to be extracted faster hut this effect is counterbalanced by the diminishing returns of the annual cash flow. At higher parameters of "alpha" close to one of the power function about 80% from the whole resource will be extracted during the first 4 years of object/mine maintenance. An existence of unique positive root with respect to return of investment has been proposed and proved by two ways: by the "method of chords" and by using specialized software.展开更多
The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented ...The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.展开更多
Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet...Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated.To fill this gap,stochastic analysis approaches,including a regional sensitivity analysis method,identifiability plot and perturbation methods,were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework.Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules.For example,the release load can be most easily inverted,and the source location is responsible for the largest uncertainty among the source parameters.The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty.The differences among the different objective functions are smaller for instantaneous release than for continuous release cases.Small monitoring errors affect the inversion results only slightly,which can be ignored in practice.Interestingly,the estimated values of the release location and time negatively deviate from the real values,and the extent is positively correlated with the relative size of the mixing zone to the objective river reach.These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.展开更多
Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions...Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions and bands sensitive to four severity degrees (severe, moderate, light, and healthy). The results show that the curves' variation on the original and the first- and second-order de- rivative curves are greatly different, but the spectral difference in the near-infrared region is the most obvious for each level. Specifically, the peaks are located at 822, 738, and 793 nm, while the valleys are located at 402, 570, and 753 run, respectively. The sensitive regions are between 430-520, 530-550, and 650-710 nm, and the bands are 498, 539, and 673 nm in the sensitivity analysis, while they are in the ranges of 401-530, 550-730 as well as at 498 nm and 678 nm in the continuum removal.展开更多
文摘In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and r c have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and r c affect the deformability;such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality(RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement.
基金Projects(51175017,51245027)supported by the National Natural Science Foundation of China
文摘To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.
基金supported by the National Natura Science Foundation of China (Grant 51275424)973 Program (Gran2011CB610304)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (Grant 20126102130003)the opening project (Grant KFJJ13-6M) of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)
文摘In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion.Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.
基金supported by the Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201506002, CRA40: 40-year CMA global atmospheric reanalysis)the National Basic Research Program of China (Grant No. 2015CB953703)+1 种基金the Intergovernmental Key International S & T Innovation Cooperation Program (Grant No. 2016YFE0102400)the National Natural Science Foundation of China (Grant Nos. 41305052 & 41375139)
文摘Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.
文摘The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro- pose an optimal extraction series of these resources during the lifetime of the Mine's maintenance. Fol- lowing the proposed optimal control model, a sensitivity analysis has been performed that includes the interest rate impact on the optimal solution. This study shows that the increasing of the interest rate sti- mulates faster extraction of the resources. The discounting factor induces that the resource has to be extracted faster hut this effect is counterbalanced by the diminishing returns of the annual cash flow. At higher parameters of "alpha" close to one of the power function about 80% from the whole resource will be extracted during the first 4 years of object/mine maintenance. An existence of unique positive root with respect to return of investment has been proposed and proved by two ways: by the "method of chords" and by using specialized software.
基金the National Natural Science Foundation of China(No.51279106)the Special Research Fund for the Doctoral Program of Higher Education of China(No.20110073110009)
文摘The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.
基金funded by the China Postdoctoral Science Foundation(Grant No.2014M551249)the National Natural Science Foundation of China(Grant No.51509061)support was provided by the Southern University of Science and Technology(Grant No.G01296001).
文摘Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated.To fill this gap,stochastic analysis approaches,including a regional sensitivity analysis method,identifiability plot and perturbation methods,were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework.Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules.For example,the release load can be most easily inverted,and the source location is responsible for the largest uncertainty among the source parameters.The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty.The differences among the different objective functions are smaller for instantaneous release than for continuous release cases.Small monitoring errors affect the inversion results only slightly,which can be ignored in practice.Interestingly,the estimated values of the release location and time negatively deviate from the real values,and the extent is positively correlated with the relative size of the mixing zone to the objective river reach.These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.
基金Supported by the National Natural Science Foundation of China (41071276 and 41101395)China Postdoctoral Science Foundation (20110490317)Postdoctoral Science Foundation of Beijing Academy of Agriculture and Forestry Sciences (2011)
文摘Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions and bands sensitive to four severity degrees (severe, moderate, light, and healthy). The results show that the curves' variation on the original and the first- and second-order de- rivative curves are greatly different, but the spectral difference in the near-infrared region is the most obvious for each level. Specifically, the peaks are located at 822, 738, and 793 nm, while the valleys are located at 402, 570, and 753 run, respectively. The sensitive regions are between 430-520, 530-550, and 650-710 nm, and the bands are 498, 539, and 673 nm in the sensitivity analysis, while they are in the ranges of 401-530, 550-730 as well as at 498 nm and 678 nm in the continuum removal.