Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately ...Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity.展开更多
A challenge for the development of Land Surface Models(LSMs) is improving transpiration of water exchange and photosynthesis of carbon exchange between terrestrial plants and the atmosphere, both of which are governed...A challenge for the development of Land Surface Models(LSMs) is improving transpiration of water exchange and photosynthesis of carbon exchange between terrestrial plants and the atmosphere, both of which are governed by stoma in leaves. In the photosynthesis module of these LSMs, variations of parameters arising from diversity in plant functional types(PFTs) and climate remain unclear. Identifying sensitive parameters among all photosynthetic parameters before parameter estimation can not only reduce operation cost, but also improve the usability of photosynthesis models worldwide. Here, we analyzed 13 parameters of a biochemically-based photosynthesis model(FvCB), implemented in many LSMs, using two sensitivity analysis(SA) methods(i.e., the Sobol’ method and the Morris method) for setting up the parameter ensemble. Three different model performance metrics, i.e.,Root Mean Squared Error(RMSE), Nash Sutcliffe efficiency(NSE), and Standard Deviation(STDEV) were introduced for model assessment and sensitive parameters identification. The results showed that among all photosynthetic parameters only a small portion of parameters were sensitive, and the sensitive parameters were different across plant functional types: maximum rate of Rubisco activity(Vcmax25), maximum electron transport rate(Jmax25), triose phosphate use rate(TPU) and dark respiration in light(Rd) were sensitive in broad leafevergreen trees(BET), broad leaf-deciduous trees(BDT) and needle leaf-evergreen trees(NET), while only Vcmax25and TPU are sensitive in short vegetation(SV), dwarf trees and shrubs(DTS), and agriculture and grassland(AG). The two sensitivity analysis methods suggested a strong SA coherence;in contrast, different model performance metrics led to different SA results. This misfit suggests that more accurate values of sensitive parameters, specifically, species specific and seasonal variable parameters, are required to improve the performance of the FvCB model.展开更多
The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscilla...The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscillation phenomenon in wide frequency domain may occur.To address the problem of small signal stability of the VSCHVDC system,a converter control strategy is designed to improve its small signal stability,and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters.Based on the modeling of the VSC-HVDC system,the general architecture of the inner and outer loop control of the VSCHVDC converter is established;and the damping controllers for DC control and AC control are designed in the phase-locked loop and the inner and outer loop control parts respectively;the state-space statemodel of the control system is established to analyze its performance.And the electromagnetic transient simulation model is built on the PSCAD/EMTDC simulation platform to verify the accuracy of the small signal model.The influence of the parameters of each control part on the stability of the system is summarized.The main control parts affecting stability are optimized for the phenomenon of oscillation due to changes in operation mode occurring on the AC side due to faults and other reasons,which effectively eliminates system oscillation and improves system small signal stability,providing a certain reference for engineering design.展开更多
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d...The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.展开更多
Preventative maintenance (PM) measures for bridges are proactive maintenance actions which aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economi...Preventative maintenance (PM) measures for bridges are proactive maintenance actions which aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economic grounds since it can extend the life of the bridge and avoid the need for unplanned essential/corrective maintenance. Due to the high importance of the effective integration of PM measures in the maintenance strategies of bridges, the authors have developed a two-stage evolutionary optimization methodology based on genetic algorithm (GA) principles which links the probabilistic effectiveness of various PM measures with their costs in order to develop optimum PM strategies. In this paper, the sensitivity of the methodology to various key input parameters of the optimization methodology is examined in order to quantify their effects and identify possible trends in the optimum PM intervention profiles. The results of the sensitivity studies highlight the combined use of both proactive and reactive PM measures in deriving optimum strategy solutions. The precise mix and sequence of PM measures is clearly a function of the relative effectiveness and cost of the different available PM options as well as the various key parameters such as discount rate, target probability of failure, initial probability of failure and service life period examined. While the results highlight the need for more reliable data they also demonstrate the robustness and usefulness of the methodology;in the case where data is limited it can be used as a comparative tool to improve understanding of the effects of various strategies and enhance the decision making process.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structur...The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.展开更多
Simulations and predictions using numerical models show considerable uncertainties,and parameter uncertainty is one of the most important sources.It is impractical to improve the simulation and prediction abilities by...Simulations and predictions using numerical models show considerable uncertainties,and parameter uncertainty is one of the most important sources.It is impractical to improve the simulation and prediction abilities by reducing the uncertainties of all parameters.Therefore,identifying the sensitive parameters or parameter combinations is crucial.This study proposes a novel approach:conditional nonlinear optimal perturbations sensitivity analysis(CNOPSA)method.The CNOPSA method fully considers the nonlinear synergistic effects of parameters in the whole parameter space and quantitatively estimates the maximum effects of parameter uncertainties,prone to extreme events.Results of the analytical g-function test indicate that the CNOPSA method can effectively identify the sensitivity of variables.Numerical results of the theoretical five-variable grassland ecosystem model show that the maximum influence of the simulated wilted biomass caused by parameter uncertainty can be estimated and computed by employing the CNOPSA method.The identified sensitive parameters can easily change the simulation or prediction of the wilted biomass,which affects the transformation of the grassland state in the grassland ecosystem.The variance-based approach may underestimate the parameter sensitivity because it only considers the influence of limited parameter samples from a statistical view.This study verifies that the CNOPSA method is effective and feasible for exploring the important and sensitive physical parameters or parameter combinations in numerical models.展开更多
The current research of the decomposition methods of complex optimization model is mostly based on the principle of disciplines, problems or components. However, numerous coupling variables will appear among the sub-m...The current research of the decomposition methods of complex optimization model is mostly based on the principle of disciplines, problems or components. However, numerous coupling variables will appear among the sub-models decomposed, thereby make the efficiency of decomposed optimization low and the effect poor. Though some collaborative optimization methods are proposed to process the coupling variables, there lacks the original strategy planning to reduce the coupling degree among the decomposed sub-models when we start decomposing a complex optimization model. Therefore, this paper proposes a decomposition method based on the global sensitivity information. In this method, the complex optimization model is decomposed based on the principle of minimizing the sensitivity sum between the design functions and design variables among different sub-models. The design functions and design variables, which are sensitive to each other, will be assigned to the same sub-models as much as possible to reduce the impacts to other sub-models caused by the changing of coupling variables in one sub-model. Two different collaborative optimization models of a gear reducer are built up separately in the multidisciplinary design optimization software iSIGHT, the optimized results turned out that the decomposition method proposed in this paper has less analysis times and increases the computational efficiency by 29.6%. This new decomposition method is also successfully applied in the complex optimization problem of hydraulic excavator working devices, which shows the proposed research can reduce the mutual coupling degree between sub-models. This research proposes a decomposition method based on the global sensitivity information, which makes the linkages least among sub-models after decomposition, and provides reference for decomposing complex optimization models and has practical engineering significance.展开更多
With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including op...With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental im...Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental impact assessment to accurately predict water temperature of reservoirs.Results showed that radiation parameter A and evaporation-first parameter were much more sensitive than other parameters.The values of the radiation parameter A ranged from 0.10 to 0.34.The values of evaporation-first parameter varied from 0 to 10.The sensitivity of solar absorption parameters was less than that of evaporation parameter,of which light attenuation values ranged from 0.5 to 0.7,and this parameter would not impact model results if it was more than 2.Constants in Beer's law ranged from 0.2 to 0.7.Radiation parameter B was not more sensitive than evaporation parameter and its reasonable range was higher than 0.48.The fitting curves showed consistent changing tendency for these parameters within the reasonable ranges.Additionally,all the thermal equilibrium parameters had much more important effects on surface water temperature than deep water temperature.Moreover,if no observed data could be obtained,the local empirical value would be used to input to the MIKE 11 model to simulate the changes in the discharged outflow-water temperature qualitatively.展开更多
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>...This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.展开更多
Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration numbe...Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration number, computation time and convergence in a mine ventilation network analysis, were investigated based on 5 mine ventilation systems. The results show that a higher computation accuracy greatly influences the iteration number. When the accuracy reaches 10-6m3·s-1 for solving a complicated mine ventilation network, the running time is too long though a high-speed computer is used. The preliminary value of airflow rate in the range of 1100m3·s-1 has little effects the iteration number. The structure of network also has some effect on the iteration number.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through...In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.展开更多
This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli ...This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.展开更多
Analytic sensitivity analysis technology for the boundary element method (BEM) is presented, combined with a shape optimization system for structural analysis. A shape optimization was done for an elastomer under plan...Analytic sensitivity analysis technology for the boundary element method (BEM) is presented, combined with a shape optimization system for structural analysis. A shape optimization was done for an elastomer under planar stress, based on this new algorithm. A multi-object problem was studied as an illustrative example for the programmer, using weighted summing method. The result is feasible.展开更多
This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calcul...This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.展开更多
Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transm...Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42276224,and 42206230)the Jilin Scientific and Technological Development Program(Grant No.20190303083SF)+2 种基金the International Cooperation Key Laboratory of Underground Energy Development and Geological Restoration(Grant No.YDZJ202102CXJD014)the Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ18)the Graduate Innovation Fund of Jilin University(Grant No.2023CX100)。
文摘Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity.
基金supported by the CAS"Light of West China"Program (No.[2020]82)Key technology projects of Inner Mongolia Autonomous Region (Grant No.2020GG0306)+1 种基金Science and Technology Plan Projects of Alxa League (Grant No.AMY2020-18)Natural Science Foundation of Gansu Province (No.21JR7RA038).
文摘A challenge for the development of Land Surface Models(LSMs) is improving transpiration of water exchange and photosynthesis of carbon exchange between terrestrial plants and the atmosphere, both of which are governed by stoma in leaves. In the photosynthesis module of these LSMs, variations of parameters arising from diversity in plant functional types(PFTs) and climate remain unclear. Identifying sensitive parameters among all photosynthetic parameters before parameter estimation can not only reduce operation cost, but also improve the usability of photosynthesis models worldwide. Here, we analyzed 13 parameters of a biochemically-based photosynthesis model(FvCB), implemented in many LSMs, using two sensitivity analysis(SA) methods(i.e., the Sobol’ method and the Morris method) for setting up the parameter ensemble. Three different model performance metrics, i.e.,Root Mean Squared Error(RMSE), Nash Sutcliffe efficiency(NSE), and Standard Deviation(STDEV) were introduced for model assessment and sensitive parameters identification. The results showed that among all photosynthetic parameters only a small portion of parameters were sensitive, and the sensitive parameters were different across plant functional types: maximum rate of Rubisco activity(Vcmax25), maximum electron transport rate(Jmax25), triose phosphate use rate(TPU) and dark respiration in light(Rd) were sensitive in broad leafevergreen trees(BET), broad leaf-deciduous trees(BDT) and needle leaf-evergreen trees(NET), while only Vcmax25and TPU are sensitive in short vegetation(SV), dwarf trees and shrubs(DTS), and agriculture and grassland(AG). The two sensitivity analysis methods suggested a strong SA coherence;in contrast, different model performance metrics led to different SA results. This misfit suggests that more accurate values of sensitive parameters, specifically, species specific and seasonal variable parameters, are required to improve the performance of the FvCB model.
基金supported by Research on the Oscillation Mechanism and Suppression Strategy of Yu-E MMC-HVDC Equipment and System(2021Yudian Technology 33#).
文摘The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscillation phenomenon in wide frequency domain may occur.To address the problem of small signal stability of the VSCHVDC system,a converter control strategy is designed to improve its small signal stability,and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters.Based on the modeling of the VSC-HVDC system,the general architecture of the inner and outer loop control of the VSCHVDC converter is established;and the damping controllers for DC control and AC control are designed in the phase-locked loop and the inner and outer loop control parts respectively;the state-space statemodel of the control system is established to analyze its performance.And the electromagnetic transient simulation model is built on the PSCAD/EMTDC simulation platform to verify the accuracy of the small signal model.The influence of the parameters of each control part on the stability of the system is summarized.The main control parts affecting stability are optimized for the phenomenon of oscillation due to changes in operation mode occurring on the AC side due to faults and other reasons,which effectively eliminates system oscillation and improves system small signal stability,providing a certain reference for engineering design.
基金Supported by National Natural Science Foundation of China(Grant No.51275164)
文摘The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.
文摘Preventative maintenance (PM) measures for bridges are proactive maintenance actions which aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economic grounds since it can extend the life of the bridge and avoid the need for unplanned essential/corrective maintenance. Due to the high importance of the effective integration of PM measures in the maintenance strategies of bridges, the authors have developed a two-stage evolutionary optimization methodology based on genetic algorithm (GA) principles which links the probabilistic effectiveness of various PM measures with their costs in order to develop optimum PM strategies. In this paper, the sensitivity of the methodology to various key input parameters of the optimization methodology is examined in order to quantify their effects and identify possible trends in the optimum PM intervention profiles. The results of the sensitivity studies highlight the combined use of both proactive and reactive PM measures in deriving optimum strategy solutions. The precise mix and sequence of PM measures is clearly a function of the relative effectiveness and cost of the different available PM options as well as the various key parameters such as discount rate, target probability of failure, initial probability of failure and service life period examined. While the results highlight the need for more reliable data they also demonstrate the robustness and usefulness of the methodology;in the case where data is limited it can be used as a comparative tool to improve understanding of the effects of various strategies and enhance the decision making process.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金Supported by the National Natural Science Foundation of China(50378041)the Program for New Century Excellent Talents of Ministry of Educationof China (2004)
文摘The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.
基金supported by the National Nature Science Foundation of China(41975132)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004).
文摘Simulations and predictions using numerical models show considerable uncertainties,and parameter uncertainty is one of the most important sources.It is impractical to improve the simulation and prediction abilities by reducing the uncertainties of all parameters.Therefore,identifying the sensitive parameters or parameter combinations is crucial.This study proposes a novel approach:conditional nonlinear optimal perturbations sensitivity analysis(CNOPSA)method.The CNOPSA method fully considers the nonlinear synergistic effects of parameters in the whole parameter space and quantitatively estimates the maximum effects of parameter uncertainties,prone to extreme events.Results of the analytical g-function test indicate that the CNOPSA method can effectively identify the sensitivity of variables.Numerical results of the theoretical five-variable grassland ecosystem model show that the maximum influence of the simulated wilted biomass caused by parameter uncertainty can be estimated and computed by employing the CNOPSA method.The identified sensitive parameters can easily change the simulation or prediction of the wilted biomass,which affects the transformation of the grassland state in the grassland ecosystem.The variance-based approach may underestimate the parameter sensitivity because it only considers the influence of limited parameter samples from a statistical view.This study verifies that the CNOPSA method is effective and feasible for exploring the important and sensitive physical parameters or parameter combinations in numerical models.
基金Supported by National Natural Science Foundation of China(Grant No.51075356)National Key Technology R&D Program(Grant No.2013BAF07B04)
文摘The current research of the decomposition methods of complex optimization model is mostly based on the principle of disciplines, problems or components. However, numerous coupling variables will appear among the sub-models decomposed, thereby make the efficiency of decomposed optimization low and the effect poor. Though some collaborative optimization methods are proposed to process the coupling variables, there lacks the original strategy planning to reduce the coupling degree among the decomposed sub-models when we start decomposing a complex optimization model. Therefore, this paper proposes a decomposition method based on the global sensitivity information. In this method, the complex optimization model is decomposed based on the principle of minimizing the sensitivity sum between the design functions and design variables among different sub-models. The design functions and design variables, which are sensitive to each other, will be assigned to the same sub-models as much as possible to reduce the impacts to other sub-models caused by the changing of coupling variables in one sub-model. Two different collaborative optimization models of a gear reducer are built up separately in the multidisciplinary design optimization software iSIGHT, the optimized results turned out that the decomposition method proposed in this paper has less analysis times and increases the computational efficiency by 29.6%. This new decomposition method is also successfully applied in the complex optimization problem of hydraulic excavator working devices, which shows the proposed research can reduce the mutual coupling degree between sub-models. This research proposes a decomposition method based on the global sensitivity information, which makes the linkages least among sub-models after decomposition, and provides reference for decomposing complex optimization models and has practical engineering significance.
文摘With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
基金Under the auspices of Research&Development Special Fund for Public Welfare Industry of Ministry of Environmental Protection(No.201309062201309003)
文摘Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental impact assessment to accurately predict water temperature of reservoirs.Results showed that radiation parameter A and evaporation-first parameter were much more sensitive than other parameters.The values of the radiation parameter A ranged from 0.10 to 0.34.The values of evaporation-first parameter varied from 0 to 10.The sensitivity of solar absorption parameters was less than that of evaporation parameter,of which light attenuation values ranged from 0.5 to 0.7,and this parameter would not impact model results if it was more than 2.Constants in Beer's law ranged from 0.2 to 0.7.Radiation parameter B was not more sensitive than evaporation parameter and its reasonable range was higher than 0.48.The fitting curves showed consistent changing tendency for these parameters within the reasonable ranges.Additionally,all the thermal equilibrium parameters had much more important effects on surface water temperature than deep water temperature.Moreover,if no observed data could be obtained,the local empirical value would be used to input to the MIKE 11 model to simulate the changes in the discharged outflow-water temperature qualitatively.
文摘This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.
基金Project (50474050) supported by the National Natural Science Foundation of China
文摘Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration number, computation time and convergence in a mine ventilation network analysis, were investigated based on 5 mine ventilation systems. The results show that a higher computation accuracy greatly influences the iteration number. When the accuracy reaches 10-6m3·s-1 for solving a complicated mine ventilation network, the running time is too long though a high-speed computer is used. The preliminary value of airflow rate in the range of 1100m3·s-1 has little effects the iteration number. The structure of network also has some effect on the iteration number.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.
基金Supported by the National Natural Science Foundation of China(10272109)
文摘In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.
文摘This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.
文摘Analytic sensitivity analysis technology for the boundary element method (BEM) is presented, combined with a shape optimization system for structural analysis. A shape optimization was done for an elastomer under planar stress, based on this new algorithm. A multi-object problem was studied as an illustrative example for the programmer, using weighted summing method. The result is feasible.
文摘This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.
文摘Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.