In the nondestructive testing and evaluation area,magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation.However the characterization ability of major hysteresis...In the nondestructive testing and evaluation area,magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation.However the characterization ability of major hysteresis loop measurement technology greatly varies as the evaluated target properties.To solve this limitation,magnetic minor hysteresis loops,which reflect the responses of ferromagnetic material magnetization in a systematic way,is recommend.Inspired by plenty of information carried by the minor loops,the sensitivity mapping technique was developed to achieve the highest sensitivity of minor-loop parameters to the nondestructively evaluated targets.In this study,for the first time,the sensitivity mapping technique is used to measure the tensile force in a steel strand and evaluate the effective case depth in induction-hardened steel rods.The method and procedures for the sensitivity mapping technique are given before experimental detection.The obtained experimental results indicate that the linear correlation between the induced voltage(or the magnetic induction intensity)and the tensile force(or effective case depth)exists at most of the locations in the cluster of minor loops.The obtained sensitivity maps can be used to optimize the applied magnetic field(or excitation current)and the analyzed locations at the minor loops for achieving the highest sensitivity.For the purpose of tensile force measurement,it is suggested that the strand should be firstly magnetized to the near-saturation state and then restored to the remanent state.In this way,the highest sensitivity is obtained as about 15.26 mV/kN.As for the induction-hardened steel rods,the highest sensitivity of magnetic induction intensity to the effective case depth occurs under low magnetic field conditions and the absolute value of the highest sensitivity is about 0.1110 T/mm.This indicates that if the highest sensitivity is required in the case depth evaluation,the induction-hardened steel rods are only required to be weakly magnetized.The proposed sensitivity mapping technique shows the good performance in the high-sensitivity evaluation of tensile force and case depth in ferromagnetic materials and its application scope can be extended to other nondestructive detection fields.展开更多
The pulsed laser facility for SEU sensitivity mapping is utilized to study the SEU sensitive regions of a 0.18/zm CMOS SRAM cell. Combined with the device layout micrograph, SEU sensitivity maps of the SRAM cell are o...The pulsed laser facility for SEU sensitivity mapping is utilized to study the SEU sensitive regions of a 0.18/zm CMOS SRAM cell. Combined with the device layout micrograph, SEU sensitivity maps of the SRAM cell are obtained. TCAD simulation work is performed to examine the SEU sensitivity characteristics of the SRAM cell. The laser mapping experiment results are discussed and compared with the electron micrograph information of the SRAM cell and the TCAD simulation results. The results present that the test technique is reliable and of high mapping precision for the deep submicron technology device.展开更多
For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures...For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700-850 °C and strain rates of 0.01-10 s-1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.展开更多
Electromagnetic tomography(EMT) is a non-invasive imaging technique capable of mapping the conductivity and permeability of an object. In EMT, eddy currents are induced in the object by the activation coils,and the re...Electromagnetic tomography(EMT) is a non-invasive imaging technique capable of mapping the conductivity and permeability of an object. In EMT, eddy currents are induced in the object by the activation coils,and the receiving coils can measure the EMT voltages. When the activation frequency is significantly large, we can treat the metallic targets as electrically perfect conductors(EPCs). In this situation, a thin skin approximation is reasonable and this type of scattering problem can be effectively treated by the boundary element method(BEM)formulated through integration equations. In this study, we compute three-dimensional(3D) sensitivity matrix between the sensors due to an EPC perturbation. Efficiency improvement is achieved through the utility of scalar magnetic potential. Two EPC objects, one sphere and one cube shaped, are simulated. The results agree well with the H dot H formula. Overall, we conclude that BEM can be used to calculate the 3D sensitivity matrix of an EMT system efficiently. This method is a general one for any shaped objects while the H dot H solution is only capable of producing the response for a small ball.展开更多
The single event effects of the sensitivity of a circuit are investigated on a 32-bit microprocessor with a five-stage instruction pipeline by pulsed laser test. The investigation on sensitive mapping of the memory ce...The single event effects of the sensitivity of a circuit are investigated on a 32-bit microprocessor with a five-stage instruction pipeline by pulsed laser test. The investigation on sensitive mapping of the memory cell is illustrated and then the comparison between the sensitive mapping and the layout of the circuit is made. A comparison result indicates that the area of the sensitive node in sensitive mapping is just the location of the drain in the layout. Therefore, SEE sensitivity in sensitive mapping fits well with that in the physical layout of functional units, which can directly and objectively indicate the size and distribution of sensitive areas. The investigation of sensitive mapping is a meaningful way to verify the hardened effect and provide a reference for improving hardened design by combining with the physical layout.展开更多
In recent years,RS and GIS technologies have played an increasingly important role in various aspects of rainfall induced landslide research.In order to systematically understand their application situation,this paper...In recent years,RS and GIS technologies have played an increasingly important role in various aspects of rainfall induced landslide research.In order to systematically understand their application situation,this paper extensively used various visualization analysis technologies for in-depth analysis of 1,161 documents collected by the WOS data platform in the past 27 years by combining quantitative and qualitative methods.Then,this article focuses on sub domain analysis from four aspects:landslide detection and monitoring,prediction models,sensitivity mapping,and risk assessment.The study found that the number of literature in thisfield has steadily increased and is expected to continue to rise.This literature review has attracted widespread attention from the academic community,but it challenging to meet research needs.Frequent and effective cooperationis between countries,institutions,and authors is very beneficial for promoting progress in thisfield.The future development direction is a new intelligent hybrid model that integrates multiple research methods.This study can provide researchers in thisfield with the core research force,hot topic evolution,and future development trends of future rainfall-induced landslides and contribute to landslide prevention and control decision-making and achieving the United Nations’sustainable development goals.展开更多
基金Supported by National Key R&D Program of China(Grant No.2018YFF01012300)National Natural Science Foundation of China(Grant No.11527801).
文摘In the nondestructive testing and evaluation area,magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation.However the characterization ability of major hysteresis loop measurement technology greatly varies as the evaluated target properties.To solve this limitation,magnetic minor hysteresis loops,which reflect the responses of ferromagnetic material magnetization in a systematic way,is recommend.Inspired by plenty of information carried by the minor loops,the sensitivity mapping technique was developed to achieve the highest sensitivity of minor-loop parameters to the nondestructively evaluated targets.In this study,for the first time,the sensitivity mapping technique is used to measure the tensile force in a steel strand and evaluate the effective case depth in induction-hardened steel rods.The method and procedures for the sensitivity mapping technique are given before experimental detection.The obtained experimental results indicate that the linear correlation between the induced voltage(or the magnetic induction intensity)and the tensile force(or effective case depth)exists at most of the locations in the cluster of minor loops.The obtained sensitivity maps can be used to optimize the applied magnetic field(or excitation current)and the analyzed locations at the minor loops for achieving the highest sensitivity.For the purpose of tensile force measurement,it is suggested that the strand should be firstly magnetized to the near-saturation state and then restored to the remanent state.In this way,the highest sensitivity is obtained as about 15.26 mV/kN.As for the induction-hardened steel rods,the highest sensitivity of magnetic induction intensity to the effective case depth occurs under low magnetic field conditions and the absolute value of the highest sensitivity is about 0.1110 T/mm.This indicates that if the highest sensitivity is required in the case depth evaluation,the induction-hardened steel rods are only required to be weakly magnetized.The proposed sensitivity mapping technique shows the good performance in the high-sensitivity evaluation of tensile force and case depth in ferromagnetic materials and its application scope can be extended to other nondestructive detection fields.
基金Project supported by the Industrial Technology Development Program of China(No.A1320110028)the Key Programs of the Chinese Academy of Sciences(No.110161501038)
文摘The pulsed laser facility for SEU sensitivity mapping is utilized to study the SEU sensitive regions of a 0.18/zm CMOS SRAM cell. Combined with the device layout micrograph, SEU sensitivity maps of the SRAM cell are obtained. TCAD simulation work is performed to examine the SEU sensitivity characteristics of the SRAM cell. The laser mapping experiment results are discussed and compared with the electron micrograph information of the SRAM cell and the TCAD simulation results. The results present that the test technique is reliable and of high mapping precision for the deep submicron technology device.
基金Project(CSTC2009BA4065) supported by the Chongqing Natural Science Foundation,China
文摘For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700-850 °C and strain rates of 0.01-10 s-1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.
基金the National Natural Science Foundation of China(No.50937005)the Shanghai Maritime University Science and Technology Program(No.20120064)
文摘Electromagnetic tomography(EMT) is a non-invasive imaging technique capable of mapping the conductivity and permeability of an object. In EMT, eddy currents are induced in the object by the activation coils,and the receiving coils can measure the EMT voltages. When the activation frequency is significantly large, we can treat the metallic targets as electrically perfect conductors(EPCs). In this situation, a thin skin approximation is reasonable and this type of scattering problem can be effectively treated by the boundary element method(BEM)formulated through integration equations. In this study, we compute three-dimensional(3D) sensitivity matrix between the sensors due to an EPC perturbation. Efficiency improvement is achieved through the utility of scalar magnetic potential. Two EPC objects, one sphere and one cube shaped, are simulated. The results agree well with the H dot H formula. Overall, we conclude that BEM can be used to calculate the 3D sensitivity matrix of an EMT system efficiently. This method is a general one for any shaped objects while the H dot H solution is only capable of producing the response for a small ball.
文摘The single event effects of the sensitivity of a circuit are investigated on a 32-bit microprocessor with a five-stage instruction pipeline by pulsed laser test. The investigation on sensitive mapping of the memory cell is illustrated and then the comparison between the sensitive mapping and the layout of the circuit is made. A comparison result indicates that the area of the sensitive node in sensitive mapping is just the location of the drain in the layout. Therefore, SEE sensitivity in sensitive mapping fits well with that in the physical layout of functional units, which can directly and objectively indicate the size and distribution of sensitive areas. The investigation of sensitive mapping is a meaningful way to verify the hardened effect and provide a reference for improving hardened design by combining with the physical layout.
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023Y FS0380,2023YFS0377,2023NSFSC1989,2022YFS0539).
文摘In recent years,RS and GIS technologies have played an increasingly important role in various aspects of rainfall induced landslide research.In order to systematically understand their application situation,this paper extensively used various visualization analysis technologies for in-depth analysis of 1,161 documents collected by the WOS data platform in the past 27 years by combining quantitative and qualitative methods.Then,this article focuses on sub domain analysis from four aspects:landslide detection and monitoring,prediction models,sensitivity mapping,and risk assessment.The study found that the number of literature in thisfield has steadily increased and is expected to continue to rise.This literature review has attracted widespread attention from the academic community,but it challenging to meet research needs.Frequent and effective cooperationis between countries,institutions,and authors is very beneficial for promoting progress in thisfield.The future development direction is a new intelligent hybrid model that integrates multiple research methods.This study can provide researchers in thisfield with the core research force,hot topic evolution,and future development trends of future rainfall-induced landslides and contribute to landslide prevention and control decision-making and achieving the United Nations’sustainable development goals.