The superplastic behavior of a commercial duplex stainless steel has beenstudied by means of isothermal hot tensile test at temperatures of 850-1050 deg C for the initialstrain rates ranging from 3X10^(-4) s^(-1) to 5...The superplastic behavior of a commercial duplex stainless steel has beenstudied by means of isothermal hot tensile test at temperatures of 850-1050 deg C for the initialstrain rates ranging from 3X10^(-4) s^(-1) to 5X10^(-2) s^(-1). At 960 deg C, the best superplasticdeformation that caused the maximum elongation greater than 840 percent was obtained for an initialstrain rate of 1.2X10^(-3) s^(-1). At 850 deg C, the best elongation 500 percent was achieved for aninitial strain rate of 2.5X10^(-3) s^(-1) During the deformation in higher temperature region,coarse gamma grains formed during the prior treatments were broken into spherical particles,resulting in a homogeneous dispersion of gamma particles within the delta-ferrite matrix. However,at lower temperatures between 800 and 950 deg C, the sigma phase was formed through the eutectoiddecomposition of delta->gamma+sigma, resulting finally in the stable equiaxed micro-duplexstructures with delta/gamma and gamma/sigma respectively. The precipitation of the sigma phaseplayed an important role in improving the superplasticity at 850 deg C. The strain-rate sensitivitycoefficient, m-values, were also determined by the strain rate change tests. The microstructurestudies show that the superplastic process occurs mainly by the local work hardening and thesubsequent dynamic recrystallization and a grain boundary sliding and grain switching mechanism.展开更多
文摘The superplastic behavior of a commercial duplex stainless steel has beenstudied by means of isothermal hot tensile test at temperatures of 850-1050 deg C for the initialstrain rates ranging from 3X10^(-4) s^(-1) to 5X10^(-2) s^(-1). At 960 deg C, the best superplasticdeformation that caused the maximum elongation greater than 840 percent was obtained for an initialstrain rate of 1.2X10^(-3) s^(-1). At 850 deg C, the best elongation 500 percent was achieved for aninitial strain rate of 2.5X10^(-3) s^(-1) During the deformation in higher temperature region,coarse gamma grains formed during the prior treatments were broken into spherical particles,resulting in a homogeneous dispersion of gamma particles within the delta-ferrite matrix. However,at lower temperatures between 800 and 950 deg C, the sigma phase was formed through the eutectoiddecomposition of delta->gamma+sigma, resulting finally in the stable equiaxed micro-duplexstructures with delta/gamma and gamma/sigma respectively. The precipitation of the sigma phaseplayed an important role in improving the superplasticity at 850 deg C. The strain-rate sensitivitycoefficient, m-values, were also determined by the strain rate change tests. The microstructurestudies show that the superplastic process occurs mainly by the local work hardening and thesubsequent dynamic recrystallization and a grain boundary sliding and grain switching mechanism.