Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the...Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.展开更多
基金supported by National Natural Science Foundation of China (11174004)Higher Educational Natural Science Foundation of Anhui Province (KJ2010A012)
文摘Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.