Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infectio...Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks.The channel assignment problem is equivalent to the generalized graph-coloring problem which is a NP-complete problem.We further present a meta-heuristic Wireless Sensor Network Parallel Tabu Search(WSN-PTS) algorithm,which can optimize global networks with small numbers of iterations.The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.展开更多
There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-cha...There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-channel chemical sensor to detect such anomalies which can be used in deep-sea at depths of more than 4 000 m. The design allowed five all-solid-state electrodes to be mounted on it and each (apart from one reference electrode) could be changed according to chemicals to be measured. Two experiments were conducted using the chemical sensors. The first was a shallow-sea trial which included sample measurements and in situ monitoring. pH, Eh, CO3^2- and SO4^2- electrodes were utilized to demonstrate that the chemical sensor was accurate and stable outside the laboratory. In the second experiment, the chemical sensor was integrated with pH, Eh, CO3^2- and H2S electrodes, and was used in 29 scans of the seabed along the Southwest Indian Ridge (SWIR) to detect hydrothermal vents, from which 27 sets of valid data were obtained. Hydrothermal vents were identified by analyzing the chemical anomalies, the primary judging criteria were decreasing voltages of Eh and H2S, matched by increasing voltages of pH and CO3^2- . We proposed that simultaneous detection of changes in these parameters will indicate a hydrothermal vent. Amongst the 27 valid sets of data, five potential hydrothermal vents were targeted using the proposed method. We suggest that our sensors could be widely employed by marine scientists.展开更多
In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes in...In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.展开更多
为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达...为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达到网络信道冲突图的最大值。文章通过对无冲突信道算法的运用,最终证实其可以有效地提高传感器网络的工作效率,大幅度提升网络的吞吐量。展开更多
This paper introduces I-MAC, a new medium access control protocol for wireless sensor networks. I-MAC targets at improving both channel utilization and energy efficiency while taking into account traffic load for each...This paper introduces I-MAC, a new medium access control protocol for wireless sensor networks. I-MAC targets at improving both channel utilization and energy efficiency while taking into account traffic load for each sensor node according to its role in the network. I-MAC reaches its objectives through prioritized and adaptive access to the channel. I-MAC performances obtained through simulations for different network topologies, scenarios and traffic loads show significant improvements in energy efficiency, channel utilization, loss ratio and delay compared to existing protocols.展开更多
In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-w...In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-way, two-way and N-way message exchange mechanisms affected by Gaussian and exponentially distributed impairments. Our main contribution is a general relationship between the total energy required for synchronizing a wireless sensor network and the clock offset estimation error by means of the transmit power, number of transmitted messages and average message delay, deriving the energy optimal lower bound as a function of the time synchronization quality and the number of hops in a multi-hop network.展开更多
Most of the current deployment schemes for Wireless Sensor Networks (WSNs) do not take the network coverage and connectivity features into account, as well as the energy consumption. This paper introduces topology con...Most of the current deployment schemes for Wireless Sensor Networks (WSNs) do not take the network coverage and connectivity features into account, as well as the energy consumption. This paper introduces topology control into the optimization deployment scheme, establishes the mathe-matical model with the minimum sum of the sensing radius of each sensors, and uses the genetic al-gorithm to solve the model to get the optimal coverage solution. In the optimal coverage deployment, the communication and channel allocation are further studied. Then the energy consumption model of the coverage scheme is built to analyze the performance of the scheme. Finally, the scheme is simulated through the network simulator NS-2. The results show the scheme can not only save 36% energy av-eragely, but also achieve 99.8% coverage rate under the condition of 45 sensors being deployed after 80 iterations. Besides, the scheme can reduce the five times interference among channels.展开更多
We present a network stack implementation for a wireless sensor platform based on a byte-level radio. The network stack provides error-correction code, multi-channel capability and reliable communication for a high pa...We present a network stack implementation for a wireless sensor platform based on a byte-level radio. The network stack provides error-correction code, multi-channel capability and reliable communication for a high packet reception rate as well as a basic packet-level communication interface. In outdoor tests, the packet reception rate is close to 100% within 800 ft and is reasonably good up to 1100 ft. This is made possible by using error correction code and a reliable transport layer. Our implementation also allows us to choose a fre-quency among multiple channels. By using multiple frequencies as well as a reliable transport layer, we can achieve a high packet reception rate by paying additional retransmission time when collisions increase with additional sensor nodes.展开更多
In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy requi...In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy required for synchronizing a WSN within a desired estimation error level is specified by both the transmit power and the required number of messages. In this paper we extend our previous work introducing nodes’ movement and the average message delay in the total energy, including a comprehensive analysis on how the distance between nodes impacts on the energy and synchronization quality trade-off under large-scale fading effects.展开更多
The efficient use of energy is an important performance metric to extend the lifetime of wireless sensor networks. Since major energy consumption of node is due to its transceiver, the design of MAC protocol plays a v...The efficient use of energy is an important performance metric to extend the lifetime of wireless sensor networks. Since major energy consumption of node is due to its transceiver, the design of MAC protocol plays a vital role in sensor network design. In cluster based sensor networks, due to the different functions of member node and cluster head node, the usage of common MAC protocol results increased energy consumption. To overcome this problem, a novel energy efficient hybrid MAC protocol (EEHMAC) for cluster based wireless sensor networks is proposed in this paper. The proposed EEHMAC protocol uses E-TDMA (Energy efficient TDMA) for intra-cluster communication and FDMA (Frequency Division Multiple Access) for inter-cluster communication. IDS (Iterative Deepening Search) based Scheduling algorithm is used for assigning time slot and frequency slot to nodes. Nodes in EEHMAC follow the periodic duty cycle, which reduces the idle listening, and overhearing problems. Simulation results reveal that an average of 18% energy saving is achieved compared to LEACH (Low Energy Adaptive Clustered Hierarchy) protocol and 10% energy is saved in comparison with GH-MAC (Graph theory based Hybrid MAC) protocol. It is evident that delay of EEHMAC is reduced by 17% and throughput is increased by 15% under all traffic conditions. These results demonstrate that EEHMAC performs better than existing MAC protocols in terms of energy efficiency, delay and throughput.展开更多
基金supported by National Key Basic Research Program of China(973 program) under Grant No. 2007CB307101National Natural Science Foundation of China under Grant No.60833002,No.60802016,No.60972010+1 种基金Next Generation Internet of China under Grant No.CNGI-0903-05the Fundamental Research Funds for the Central Universities under Grant No.2009YJS011
文摘Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks.The channel assignment problem is equivalent to the generalized graph-coloring problem which is a NP-complete problem.We further present a meta-heuristic Wireless Sensor Network Parallel Tabu Search(WSN-PTS) algorithm,which can optimize global networks with small numbers of iterations.The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.
基金The Open Foundation of Laboratory of Marine Ecosystem and Biogeochemistry,SOA under contract No.LMEB201701
文摘There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-channel chemical sensor to detect such anomalies which can be used in deep-sea at depths of more than 4 000 m. The design allowed five all-solid-state electrodes to be mounted on it and each (apart from one reference electrode) could be changed according to chemicals to be measured. Two experiments were conducted using the chemical sensors. The first was a shallow-sea trial which included sample measurements and in situ monitoring. pH, Eh, CO3^2- and SO4^2- electrodes were utilized to demonstrate that the chemical sensor was accurate and stable outside the laboratory. In the second experiment, the chemical sensor was integrated with pH, Eh, CO3^2- and H2S electrodes, and was used in 29 scans of the seabed along the Southwest Indian Ridge (SWIR) to detect hydrothermal vents, from which 27 sets of valid data were obtained. Hydrothermal vents were identified by analyzing the chemical anomalies, the primary judging criteria were decreasing voltages of Eh and H2S, matched by increasing voltages of pH and CO3^2- . We proposed that simultaneous detection of changes in these parameters will indicate a hydrothermal vent. Amongst the 27 valid sets of data, five potential hydrothermal vents were targeted using the proposed method. We suggest that our sensors could be widely employed by marine scientists.
基金Project supported by the National Natural Science Foundation of China(Grant No.61403336)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2015203342 and F2015203291)the Independent Research Project Topics B Category for Young Teacher of Yanshan University,China(Grant No.15LGB007)
文摘In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.
文摘为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达到网络信道冲突图的最大值。文章通过对无冲突信道算法的运用,最终证实其可以有效地提高传感器网络的工作效率,大幅度提升网络的吞吐量。
文摘This paper introduces I-MAC, a new medium access control protocol for wireless sensor networks. I-MAC targets at improving both channel utilization and energy efficiency while taking into account traffic load for each sensor node according to its role in the network. I-MAC reaches its objectives through prioritized and adaptive access to the channel. I-MAC performances obtained through simulations for different network topologies, scenarios and traffic loads show significant improvements in energy efficiency, channel utilization, loss ratio and delay compared to existing protocols.
文摘In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-way, two-way and N-way message exchange mechanisms affected by Gaussian and exponentially distributed impairments. Our main contribution is a general relationship between the total energy required for synchronizing a wireless sensor network and the clock offset estimation error by means of the transmit power, number of transmitted messages and average message delay, deriving the energy optimal lower bound as a function of the time synchronization quality and the number of hops in a multi-hop network.
基金Supported by the National Natural Science Foundation of China (No. 60973139&60773041)the Natural Science Foundation of Jiangsu Province (BK2008451)+3 种基金Special Fund for Software Technology of Jiangsu Province, Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institutions (08KJB520006)Postdoctoral Foundation (0801019C, 20090451240, 20090451241)Science & Technology Innovation Fund for Higher Education Institutions of Jiangsu Province (CX10B_198Z,CX09B_153Z)the Six Kinds of Top Talent of Jiangsu Province (2008118)
文摘Most of the current deployment schemes for Wireless Sensor Networks (WSNs) do not take the network coverage and connectivity features into account, as well as the energy consumption. This paper introduces topology control into the optimization deployment scheme, establishes the mathe-matical model with the minimum sum of the sensing radius of each sensors, and uses the genetic al-gorithm to solve the model to get the optimal coverage solution. In the optimal coverage deployment, the communication and channel allocation are further studied. Then the energy consumption model of the coverage scheme is built to analyze the performance of the scheme. Finally, the scheme is simulated through the network simulator NS-2. The results show the scheme can not only save 36% energy av-eragely, but also achieve 99.8% coverage rate under the condition of 45 sensors being deployed after 80 iterations. Besides, the scheme can reduce the five times interference among channels.
文摘We present a network stack implementation for a wireless sensor platform based on a byte-level radio. The network stack provides error-correction code, multi-channel capability and reliable communication for a high packet reception rate as well as a basic packet-level communication interface. In outdoor tests, the packet reception rate is close to 100% within 800 ft and is reasonably good up to 1100 ft. This is made possible by using error correction code and a reliable transport layer. Our implementation also allows us to choose a fre-quency among multiple channels. By using multiple frequencies as well as a reliable transport layer, we can achieve a high packet reception rate by paying additional retransmission time when collisions increase with additional sensor nodes.
文摘In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy required for synchronizing a WSN within a desired estimation error level is specified by both the transmit power and the required number of messages. In this paper we extend our previous work introducing nodes’ movement and the average message delay in the total energy, including a comprehensive analysis on how the distance between nodes impacts on the energy and synchronization quality trade-off under large-scale fading effects.
文摘The efficient use of energy is an important performance metric to extend the lifetime of wireless sensor networks. Since major energy consumption of node is due to its transceiver, the design of MAC protocol plays a vital role in sensor network design. In cluster based sensor networks, due to the different functions of member node and cluster head node, the usage of common MAC protocol results increased energy consumption. To overcome this problem, a novel energy efficient hybrid MAC protocol (EEHMAC) for cluster based wireless sensor networks is proposed in this paper. The proposed EEHMAC protocol uses E-TDMA (Energy efficient TDMA) for intra-cluster communication and FDMA (Frequency Division Multiple Access) for inter-cluster communication. IDS (Iterative Deepening Search) based Scheduling algorithm is used for assigning time slot and frequency slot to nodes. Nodes in EEHMAC follow the periodic duty cycle, which reduces the idle listening, and overhearing problems. Simulation results reveal that an average of 18% energy saving is achieved compared to LEACH (Low Energy Adaptive Clustered Hierarchy) protocol and 10% energy is saved in comparison with GH-MAC (Graph theory based Hybrid MAC) protocol. It is evident that delay of EEHMAC is reduced by 17% and throughput is increased by 15% under all traffic conditions. These results demonstrate that EEHMAC performs better than existing MAC protocols in terms of energy efficiency, delay and throughput.