期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Data Discrimination in Fault-Prone Sensor Networks
1
作者 Xiaoning Cui Qing Li Baohua Zhao 《Wireless Sensor Network》 2010年第4期285-292,共8页
While sensor networks have been used in various applications because of the automatic sensing capability and ad-hoc organization of sensor nodes, the fault-prone characteristic of sensor networks has challenged the ev... While sensor networks have been used in various applications because of the automatic sensing capability and ad-hoc organization of sensor nodes, the fault-prone characteristic of sensor networks has challenged the event detection and the anomaly detection which, to some extent, have neglected the importance of discriminating events and errors. Considering data uncertainty, in this article, we present the problem of data discrimination in fault-prone sensor networks, analyze the similarities and the differences between events and errors, and design a multi-level systematic discrimination framework. In each step, the framework filters erroneous data from the raw data and marks potential event samples for the next-step processing. The raw data set D is finally partitioned into three subsets, Devent, Derror and Dordinary. Both the scenario-based simulations and the experiments on real-sensed data are carried out. The statistical results of various discrimination metrics demonstrate high distinction ratio as well as the robustness in different cases of the network. 展开更多
关键词 data DISCRIMINATION Fault-Prone sensor Network event error distinction Ratio
下载PDF
传感器数据中事件样本与错误样本的系统化区分框架
2
作者 崔筱宁 赵保华 +1 位作者 李青 周颢 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第10期30-35,共6页
针对传感器网络中对事件/异常检测的研究在一定程度上忽略了区分数据样本的重要性问题,依据传感器数据的不确定性分析了事件样本和错误样本的相似点和不同点,设计了系统化区分框架,通过节点级时域处理、邻居级空间处理、聚簇级权重排序... 针对传感器网络中对事件/异常检测的研究在一定程度上忽略了区分数据样本的重要性问题,依据传感器数据的不确定性分析了事件样本和错误样本的相似点和不同点,设计了系统化区分框架,通过节点级时域处理、邻居级空间处理、聚簇级权重排序和网络级决策融合的方法逐层过滤,将原始样本集划分为正常样本集、错误样本集和事件样本集.真实数据集的实验结果显示,所提框架在不同网络质量下对样本的辨识率均在97%以上,可将误报率降低到传统事件/异常检测方法的1/10,且漏报率不超过传统方法. 展开更多
关键词 传感器数据 事件 错误 系统化区分框架
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部