We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theo- retically designed a new sensor for detecting water molecules using single-waJ1ed ZnO nanotubes using a combination ...We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theo- retically designed a new sensor for detecting water molecules using single-waJ1ed ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H2O molecules on the ZnO nanotube surface have been investigated, Our computational results demonstrate that the formation of hydrogen bonding between the H2O molecules and the ZnO nanotube, and adsorption energies of the H2O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H2O molecules adsorbed on its surface are calculated, the results of which showed that the H2O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H2O molecules by applying bias voltages.展开更多
The nanopore size effect on translocation of poly(dT)30through Si3N4 membrane is investigated.In this paper,we report that the speed of the poly(dT)30 transport through Si3N4 nanopores can be slowed down by half throu...The nanopore size effect on translocation of poly(dT)30through Si3N4 membrane is investigated.In this paper,we report that the speed of the poly(dT)30 transport through Si3N4 nanopores can be slowed down by half through increasing the nanopore diameter from 4.8 nm to 10.8 nm.The results are consistent with our simulation results.Besides,the current blockage induced by DNA passing through the nanopore is less obvious as pore diameter is larger,which is in good agreement with the theoretical prediction.The conclusion about DNA transport through nanopores is beneficial for the design of DNA sequencing devices.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.11174214the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20090181110080
文摘We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theo- retically designed a new sensor for detecting water molecules using single-waJ1ed ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H2O molecules on the ZnO nanotube surface have been investigated, Our computational results demonstrate that the formation of hydrogen bonding between the H2O molecules and the ZnO nanotube, and adsorption energies of the H2O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H2O molecules adsorbed on its surface are calculated, the results of which showed that the H2O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H2O molecules by applying bias voltages.
基金supported by the National Basic Research Program of China(Grant No.2011CB707605)the Natural Science Foundation of China(Grants Nos.50925519,51003015,and 51005048)the Research Funding for the Doctor Program from China Educational Ministry(Grant No.20100092110051)
文摘The nanopore size effect on translocation of poly(dT)30through Si3N4 membrane is investigated.In this paper,we report that the speed of the poly(dT)30 transport through Si3N4 nanopores can be slowed down by half through increasing the nanopore diameter from 4.8 nm to 10.8 nm.The results are consistent with our simulation results.Besides,the current blockage induced by DNA passing through the nanopore is less obvious as pore diameter is larger,which is in good agreement with the theoretical prediction.The conclusion about DNA transport through nanopores is beneficial for the design of DNA sequencing devices.