Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In thi...Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.展开更多
Network topology inference is one of the important applications of network tomography.Traditional network topology inference may impact network normal operation due to its generation of huge data traffic.A unicast net...Network topology inference is one of the important applications of network tomography.Traditional network topology inference may impact network normal operation due to its generation of huge data traffic.A unicast network topology inference is proposed to use time to live(TTL)for layering and classify nodes layer by layer based on the similarity of node pairs.Finally,the method infers logical network topology effectively with self-adaptive combination of previous results.Simulation results show that the proposed method holds a high accuracy of topology inference while decreasing network measuring flow,thus improves measurement efficiency.展开更多
Radio-frequency(RF) tomography is an emerging technology which derives targets location information by analyzing the changes of received signal strength(RSS) in wireless links. This paper presents and evaluates a nove...Radio-frequency(RF) tomography is an emerging technology which derives targets location information by analyzing the changes of received signal strength(RSS) in wireless links. This paper presents and evaluates a novel RF tomography system which is capable of detecting and tracking a time-varying number of targets in a cluttered indoor environment. The system incorporates an observation model based on RSS attenuation histogram and a multi-target tracking-by-detection filtering approach based on probability hypothesis density(PHD) filter. In addition, the sequential Monte Carlo method is applied to implement the multi-target filtering. To evaluate the tracking system, the experiments involving up to 3 targets were performed within an obstructed indoor area of 70 m2. The experimental results indicate that the proposed tracking system is capable of tracking a time-varying number of targets.展开更多
文摘Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.
基金supported by the National Natural Science Foundation of China (Nos.61373137,61373017, 61373139)the Major Program of Jiangsu Higher Education Institutions (No.14KJA520002)+1 种基金the Six Industries Talent Peaks Plan of Jiangsu(No.2013-DZXX-014)the Jiangsu Qinglan Project
文摘Network topology inference is one of the important applications of network tomography.Traditional network topology inference may impact network normal operation due to its generation of huge data traffic.A unicast network topology inference is proposed to use time to live(TTL)for layering and classify nodes layer by layer based on the similarity of node pairs.Finally,the method infers logical network topology effectively with self-adaptive combination of previous results.Simulation results show that the proposed method holds a high accuracy of topology inference while decreasing network measuring flow,thus improves measurement efficiency.
文摘Radio-frequency(RF) tomography is an emerging technology which derives targets location information by analyzing the changes of received signal strength(RSS) in wireless links. This paper presents and evaluates a novel RF tomography system which is capable of detecting and tracking a time-varying number of targets in a cluttered indoor environment. The system incorporates an observation model based on RSS attenuation histogram and a multi-target tracking-by-detection filtering approach based on probability hypothesis density(PHD) filter. In addition, the sequential Monte Carlo method is applied to implement the multi-target filtering. To evaluate the tracking system, the experiments involving up to 3 targets were performed within an obstructed indoor area of 70 m2. The experimental results indicate that the proposed tracking system is capable of tracking a time-varying number of targets.