In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
The experiment is conducted to investigate the effect of expansion on the shock wave boundary layer interaction near a compression ramp. The small-angle expansion with an angle degree of 5° occurs at different po...The experiment is conducted to investigate the effect of expansion on the shock wave boundary layer interaction near a compression ramp. The small-angle expansion with an angle degree of 5° occurs at different positions in front of the compression ramp. The particle image velocimetry and flow visualization technology show the flow structures, velocity field, and velocity fluctuation near the compression ramp. The mean pressure distribution, pressure fluctuation, and power spectral density are measured by high-frequency response pressure transducers. The experimental results indicate that the expansion before the compression ramp position affects the shock wave boundary layer interaction to induce a large-scale separation. But the velocity fluctuation and pressure fluctuation are attenuated near the large-scale flow separation region. When the expansion occurs closer to the compression ramp, the expansion has a more significant impact on the flow. The fluctuation of velocity and pressure is significantly attenuated, and the wall pressure rise of the separation point is reduced obviously. And the characteristic low-frequency spectrum signal related to the unsteadiness of the shock wave boundary layer interaction is significantly suppressed. In addition, variation of the separation region scale at different compression angle degrees is distinctive with the effect of expansion.展开更多
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
基金supported by the National Key Technology Research and Development Program of China(No.2019YFA0405300)the National Natural Science Foundation of China(No.11902354).
文摘The experiment is conducted to investigate the effect of expansion on the shock wave boundary layer interaction near a compression ramp. The small-angle expansion with an angle degree of 5° occurs at different positions in front of the compression ramp. The particle image velocimetry and flow visualization technology show the flow structures, velocity field, and velocity fluctuation near the compression ramp. The mean pressure distribution, pressure fluctuation, and power spectral density are measured by high-frequency response pressure transducers. The experimental results indicate that the expansion before the compression ramp position affects the shock wave boundary layer interaction to induce a large-scale separation. But the velocity fluctuation and pressure fluctuation are attenuated near the large-scale flow separation region. When the expansion occurs closer to the compression ramp, the expansion has a more significant impact on the flow. The fluctuation of velocity and pressure is significantly attenuated, and the wall pressure rise of the separation point is reduced obviously. And the characteristic low-frequency spectrum signal related to the unsteadiness of the shock wave boundary layer interaction is significantly suppressed. In addition, variation of the separation region scale at different compression angle degrees is distinctive with the effect of expansion.