Humans have severely impacted global ecosystems and this shows few signs of abating.Many aspects of an animal’s biology,including its sensory systems,may be adversely influenced by pollutants and environmental noise....Humans have severely impacted global ecosystems and this shows few signs of abating.Many aspects of an animal’s biology,including its sensory systems,may be adversely influenced by pollutants and environmental noise.This review focuses on whether and/or how various environmental disturbances disrupt the sensory systems of fishes.As critical as it is to document and understand the current effects of the human footprint,it is also important to consider how organisms might adapt to these impacts over the long term.The present paper outlines the sources of genetic and genomic variation upon which natural selection can act and then reviews examples of known genetic contributions of variation in fish chemosensory,visual and acoustico-lateralis systems.展开更多
Nature creatures have evolved excellent receptors, such as sensory hairs in arthropods, lateral line system of fishes. Researchers inspired by nature creatures have developed various mechanical sensors. Here, we provi...Nature creatures have evolved excellent receptors, such as sensory hairs in arthropods, lateral line system of fishes. Researchers inspired by nature creatures have developed various mechanical sensors. Here, we provide an overview on the development of Artificial Hair-Like (AHL) sensors based on the inspiration of hair flow sensory receptors, especially sensory hairs in arthropods and lateral line systems of fishes. We classify the developed AHL sensors into several categories according to the operating principles they based on, for example, piezoresistive and piezoelectric effects. The current challenges and existing problems in the development of AHL sensors are also present, which were primarily restricted by the exploratory tools of sensing mechanism of creatures and current manufacturing technologies. In future, more efforts are required in order to further improve the performance of AHL sensors. We expect that intelligent multi-functional AHL sensors can be applied not only in applications like navigation of underwater automatic vehicles, underwater search and rescue, tap-water metering, air monitoring and even in medicare, but also potentially be used in space robots to detect complex to- pography.展开更多
The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. Fo...The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. For this purpose, TRP channel antagonists were administered into the dorsal surface of a hind paw 15 min before capsaicin, allyl isothiocyanate (AITC), or formalin. Their antiallodynic and antihyperalgesic efficacies after intraperitoneal ad- ministration were also assessed in a paclitaxel-induced neuropathic pain model. Motor coordination of paclitaxel- treated mice that received these TRP channel antagonists was investigated using the rotarod test. TRPV1 antagonists, capsazepine and SB-366791, attenuated capsaicin-induced nociceptive reaction in a concentration-dependent manner. At 8 pg/20 pl, this effect was 51% (P〈0.001) for capsazepine and 37% (P〈0.05) for SB-366791. A TRPA1 antagonist, A-967079, reduced pain reaction by 48% (P〈0.05) in the AITC test and by 54% (P〈0.001) in the early phase of the formalin test. The test compounds had no influence on the late phase of the formalin test. In paclitaxel-treated mice, they did not attenuate heat hyperalgesia but N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB), a TRPM8 antagonist, reduced cold hyperalgesia and tactile allodynia by 31% (P〈0.05) and 51% (P〈0.01), respectively. HC-030031, a TRPA1 channel antagonist, attenuated tactile allodynia in the von Frey test (62%; P〈0.001). In conclusion, distinct members of TRP channel family are involved in different pain models in mice. Antagonists of TRP channels attenuate nocifensive responses of neurogenic, tonic, and neuropathic pain, but their efficacies strongly depend on the pain model used.展开更多
文摘Humans have severely impacted global ecosystems and this shows few signs of abating.Many aspects of an animal’s biology,including its sensory systems,may be adversely influenced by pollutants and environmental noise.This review focuses on whether and/or how various environmental disturbances disrupt the sensory systems of fishes.As critical as it is to document and understand the current effects of the human footprint,it is also important to consider how organisms might adapt to these impacts over the long term.The present paper outlines the sources of genetic and genomic variation upon which natural selection can act and then reviews examples of known genetic contributions of variation in fish chemosensory,visual and acoustico-lateralis systems.
基金This research was supported by the Natural Science Foundation of China (Nos. 51325501, 51675220 and 51205161), Natural Science Foundation of Jilin Province of China (No. 20170101115JC), the 13th Five-Year scientific research project of Education Department of Jilin Province (No. 2015474).
文摘Nature creatures have evolved excellent receptors, such as sensory hairs in arthropods, lateral line system of fishes. Researchers inspired by nature creatures have developed various mechanical sensors. Here, we provide an overview on the development of Artificial Hair-Like (AHL) sensors based on the inspiration of hair flow sensory receptors, especially sensory hairs in arthropods and lateral line systems of fishes. We classify the developed AHL sensors into several categories according to the operating principles they based on, for example, piezoresistive and piezoelectric effects. The current challenges and existing problems in the development of AHL sensors are also present, which were primarily restricted by the exploratory tools of sensing mechanism of creatures and current manufacturing technologies. In future, more efforts are required in order to further improve the performance of AHL sensors. We expect that intelligent multi-functional AHL sensors can be applied not only in applications like navigation of underwater automatic vehicles, underwater search and rescue, tap-water metering, air monitoring and even in medicare, but also potentially be used in space robots to detect complex to- pography.
基金supported by the National Science Centre Grant(No.DEC-2012/05/B/NZ7/02705),Poland
文摘The aim of this research was to assess the antinociceptive activity of the transient receptor potential (TRP) channel TRPV1, TRPM8, and TRPA1 antagonists in neurogenic, tonic, and neuropathic pain models in mice. For this purpose, TRP channel antagonists were administered into the dorsal surface of a hind paw 15 min before capsaicin, allyl isothiocyanate (AITC), or formalin. Their antiallodynic and antihyperalgesic efficacies after intraperitoneal ad- ministration were also assessed in a paclitaxel-induced neuropathic pain model. Motor coordination of paclitaxel- treated mice that received these TRP channel antagonists was investigated using the rotarod test. TRPV1 antagonists, capsazepine and SB-366791, attenuated capsaicin-induced nociceptive reaction in a concentration-dependent manner. At 8 pg/20 pl, this effect was 51% (P〈0.001) for capsazepine and 37% (P〈0.05) for SB-366791. A TRPA1 antagonist, A-967079, reduced pain reaction by 48% (P〈0.05) in the AITC test and by 54% (P〈0.001) in the early phase of the formalin test. The test compounds had no influence on the late phase of the formalin test. In paclitaxel-treated mice, they did not attenuate heat hyperalgesia but N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB), a TRPM8 antagonist, reduced cold hyperalgesia and tactile allodynia by 31% (P〈0.05) and 51% (P〈0.01), respectively. HC-030031, a TRPA1 channel antagonist, attenuated tactile allodynia in the von Frey test (62%; P〈0.001). In conclusion, distinct members of TRP channel family are involved in different pain models in mice. Antagonists of TRP channels attenuate nocifensive responses of neurogenic, tonic, and neuropathic pain, but their efficacies strongly depend on the pain model used.