Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
We use a lot of devices in our daily life to communicate with others. In this modern world, people use email, Facebook, Twitter, and many other social network sites for exchanging information. People lose their valuab...We use a lot of devices in our daily life to communicate with others. In this modern world, people use email, Facebook, Twitter, and many other social network sites for exchanging information. People lose their valuable time misspelling and retyping, and some people are not happy to type large sentences because they face unnecessary words or grammatical issues. So, for this reason, word predictive systems help to exchange textual information more quickly, easier, and comfortably for all people. These systems predict the next most probable words and give users to choose of the needed word from these suggested words. Word prediction can help the writer by predicting the next word and helping complete the sentence correctly. This research aims to forecast the most suitable next word to complete a sentence for any given context. In this research, we have worked on the Bangla language. We have presented a process that can expect the next maximum probable and proper words and suggest a complete sentence using predicted words. In this research, GRU-based RNN has been used on the N-gram dataset to develop the proposed model. We collected a large dataset using multiple sources in the Bangla language and also compared it to the other approaches that have been used such as LSTM, and Naive Bayes. But this suggested approach provides excellent exactness than others. Here, the Unigram model provides 88.22%, Bi-gram model is 99.24%, Tri-gram model is 97.69%, and 4-gram and 5-gram models provide 99.43% and 99.78% on average accurateness. We think that our proposed method profound impression on Bangla search engines.展开更多
Cognitive grammar,as a linguistic theory that attaches importance to the relationship between language and thinking,provides us with a more comprehensive way to understand the structure,semantics and cognitive process...Cognitive grammar,as a linguistic theory that attaches importance to the relationship between language and thinking,provides us with a more comprehensive way to understand the structure,semantics and cognitive processing of noun predicate sentences.Therefore,under the framework of cognitive grammar,this paper tries to analyze the semantic connection and cognitive process in noun predicate sentences from the semantic perspective and the method of example theory,and discusses the motivation of the formation of this construction,so as to provide references for in-depth analysis of the cognitive laws behind noun predicate sentences.展开更多
In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one c...In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.展开更多
The Ba sentence is unique existence in Chinese. There is no corresponding sentence pattern in English. Thus, the translation of Ba sentences is a challenge for translators. Even with the myriad analyses on the transla...The Ba sentence is unique existence in Chinese. There is no corresponding sentence pattern in English. Thus, the translation of Ba sentences is a challenge for translators. Even with the myriad analyses on the translation of Ba sentences, small quantity of them demonstrates the correctness and the reading effect of the translation by using a specific theory. And the image schema theory reflects the projects between the source domain and the target domain, while in the translation analysis there are schemata in the source language and the target language. So the paper does comparisons of schemata between the source text and the target text of Ba sentences, which are chosen from the English translation of Words of Fire—Poems by Jidi Majia translated by Denis Mair. After the demonstration, the following conclusions are found: First, the schema of the sentence is decided by verbs of the Ba sentences, rather than by the sentence structures;second, the image schema is a feasible tool to check correctness of Ba sentences translation.展开更多
Retaining the death penalty and strict restricting the application of the death penalty is now a basic criminal policy in China, and from the judicial level, the key to the restriction of the death penalty is to study...Retaining the death penalty and strict restricting the application of the death penalty is now a basic criminal policy in China, and from the judicial level, the key to the restriction of the death penalty is to study what lenient sentencing discretion the criminal has to constitute "not to execute immediately" when he has reached the standard of the immediate execution of the death penalty, to cross the chasm from the immediate execution of the death penalty to the death sentence with a reprieve. The basic process of the sentencing is to establish a baseline punishment on the basis of the social harmfulness of the activities of the criminal, and then measure the profits and losses according to the offender's personal danger. Therefore, although the social harmfulness of the activities of the criminal reaches the standard of the "most heinous crimes", due to the existence of the fault of the victim, active compensation for the victim, and the motives of the small blames and other lenient sentencing discretions, the criminal's danger has not reached the degree of "flagrance". Apply the death sentence with a two-year reprieve and even the life imprisonment generally. If there are some strict sentencing discretions, such as "the crime means is extremely cruel", carefully consider the use of the immediate execution of the death penalty. Under the circumstances of the concurrence of the sentencing, carry on the overall consideration based on the comprehensive measurement of various circumstances of the sentencing.展开更多
My investigation will serve two purposes. First, I shall investigate the function of the subclauses in the corpus in relation to their complexity, and I shall establish whether there is a correlation between sentence ...My investigation will serve two purposes. First, I shall investigate the function of the subclauses in the corpus in relation to their complexity, and I shall establish whether there is a correlation between sentence length and sentence complexity.Second, I shall analyse the complexity of the subclauses collected from the two sections and compare the results from these sections, focusing on finite subclauses and non-finite subclauses. I hope to be able to point out some differences in style between the news and sports sections concerning the use of subordinate clauses in various syntactic functions in order to examine how the choice of linguistic structures differs in different sections of The Times.展开更多
Since the opening-up policy was carried out in 1979, every facility of social modernized construction has developed at high speed; meanwhile, the need of English is increased year by year. The occasion and scope of us...Since the opening-up policy was carried out in 1979, every facility of social modernized construction has developed at high speed; meanwhile, the need of English is increased year by year. The occasion and scope of using it are expanded with the communications among countries. Therefore, English has become the generally international language in our country; in particular, translation plays an important and irreplaceable part in English to convey information. This paper aims to introduce the contrasts of English sentences and Chinese sentences and discuss some skills of translating each other. Though it is not complete and authoritative, yet it may help some people to understand the differences between two languages and to grasp some practical skills.展开更多
In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely f...In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely fully analyzed,which is a major obstacle to the intelligent development of the social IoT.In this paper,we propose a sentence similarity analysis model to analyze the similarity in people’s opinions on hot topics in social media and news pages.Most of these data are unstructured or semi-structured sentences,so the accuracy of sentence similarity analysis largely determines the model’s performance.For the purpose of improving accuracy,we propose a novel method of sentence similarity computation to extract the syntactic and semantic information of the semi-structured and unstructured sentences.We mainly consider the subjects,predicates and objects of sentence pairs and use Stanford Parser to classify the dependency relation triples to calculate the syntactic and semantic similarity between two sentences.Finally,we verify the performance of the model with the Microsoft Research Paraphrase Corpus(MRPC),which consists of 4076 pairs of training sentences and 1725 pairs of test sentences,and most of the data came from the news of social data.Extensive simulations demonstrate that our method outperforms other state-of-the-art methods regarding the correlation coefficient and the mean deviation.展开更多
Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similari...Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similarity score between two sentences is computed as follows.First,given a sentence,two matrices are constructed accordingly,which are called the syntax model input matrix and the semantic model input matrix;one records some syntax features,and the other records some semantic features.By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices,we adopt the most effective way of constructing the matrices.Second,these two matrices are given to two neural networks,which are called the sentence model and the semantic model,respectively.The convolution process of the neural networks of the two models is carried out in multiple perspectives.The outputs of the two models are combined as a vector,which is the representation of the sentence.Third,given the representation vectors of two sentences,the similarity score of these representations is computed by a layer in the CNN.Experiment results show that our algorithm(SSCNN)surpasses the performance MPCPP,which noticeably the best recent work of using CNN for sentence similarity computation.Comparing with MPCNN,the convolution computation in SSCNN is considerably simpler.Based on the results of this work,we suggest that by further utilization of semantic and syntactic features,the performance of sentence similarity measurements has considerable potentials to be improved in the future.展开更多
Text Summarization is an essential area in text mining,which has procedures for text extraction.In natural language processing,text summarization maps the documents to a representative set of descriptive words.Therefo...Text Summarization is an essential area in text mining,which has procedures for text extraction.In natural language processing,text summarization maps the documents to a representative set of descriptive words.Therefore,the objective of text extraction is to attain reduced expressive contents from the text documents.Text summarization has two main areas such as abstractive,and extractive summarization.Extractive text summarization has further two approaches,in which the first approach applies the sentence score algorithm,and the second approach follows the word embedding principles.All such text extractions have limitations in providing the basic theme of the underlying documents.In this paper,we have employed text summarization by TF-IDF with PageRank keywords,sentence score algorithm,and Word2Vec word embedding.The study compared these forms of the text summarizations with the actual text,by calculating cosine similarities.Furthermore,TF-IDF based PageRank keywords are extracted from the other two extractive summarizations.An intersection over these three types of TD-IDF keywords to generate the more representative set of keywords for each text document is performed.This technique generates variable-length keywords as per document diversity instead of selecting fixedlength keywords for each document.This form of abstractive summarization improves metadata similarity to the original text compared to all other forms of summarized text.It also solves the issue of deciding the number of representative keywords for a specific text document.To evaluate the technique,the study used a sample of more than eighteen hundred text documents.The abstractive summarization follows the principles of deep learning to create uniform similarity of extracted words with actual text and all other forms of text summarization.The proposed technique provides a stable measure of similarity as compared to existing forms of text summarization.展开更多
This paper intends to analyze the six types of English imperative sentences proposed by Chen (1984) from a perspective of causal-chain windowing. It comes to the conclusions that Talmy's causal-chain windowing app...This paper intends to analyze the six types of English imperative sentences proposed by Chen (1984) from a perspective of causal-chain windowing. It comes to the conclusions that Talmy's causal-chain windowing approach as well as the cognitive underpinnings of causal windowing and gapping is proved to be applicable in English imperative structures, and that generally speaking, the final portion of an imperative sentence is always windowed while the intermediate portions gapped.展开更多
As a special construction,existential sentences(ES) are wildly used in English.However,the Chinese,having different grammatical system,master this construction with much attention,occurring different levels of mistake...As a special construction,existential sentences(ES) are wildly used in English.However,the Chinese,having different grammatical system,master this construction with much attention,occurring different levels of mistakes during each period of learning.In this paper,the author tries to study on ES from the syntactic perspective and provide some help for English teaching through the result of an experiment.展开更多
This paper aims to explore how learners of English as a second language(ESL)acquire English conditional sentences and what causes their difficulties,especially focusing on how their native languages affect their acqui...This paper aims to explore how learners of English as a second language(ESL)acquire English conditional sentences and what causes their difficulties,especially focusing on how their native languages affect their acquisition of the conditional sentences.Interviews were carried out with four undergraduate ESL students of University of Central Oklahoma in the United States who are respectively Chinese,Korean,French,and Greek.By conducting interviews with them,the participants’perceptions of acquiring English conditional sentences will be collected and analyzed.There will be some typical errors of constructing conditional sentences demonstrated.Moreover,some pedagogical implications will also be provided,which will help students have a better command of the conditional sentences.展开更多
To reveal invariant properties of human languages is one of the central goals of modern generative grammar.Hierarchical feature of sentence construction, one of the key notions in this regard, reflects one of the most...To reveal invariant properties of human languages is one of the central goals of modern generative grammar.Hierarchical feature of sentence construction, one of the key notions in this regard, reflects one of the most widely accepted invariant properties of human languages. However,researchers also challenge this point and argue that languages differ fundamentally from one another so that it is very hard to find any single structural property which they share. This paper revisits the evidence for the hierarchical structure of sentences from the principle of structure dependence in first and second language acquisition and argues that the recognition of hierarchical structure of sentences is essential to any linguistic exploration.展开更多
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘We use a lot of devices in our daily life to communicate with others. In this modern world, people use email, Facebook, Twitter, and many other social network sites for exchanging information. People lose their valuable time misspelling and retyping, and some people are not happy to type large sentences because they face unnecessary words or grammatical issues. So, for this reason, word predictive systems help to exchange textual information more quickly, easier, and comfortably for all people. These systems predict the next most probable words and give users to choose of the needed word from these suggested words. Word prediction can help the writer by predicting the next word and helping complete the sentence correctly. This research aims to forecast the most suitable next word to complete a sentence for any given context. In this research, we have worked on the Bangla language. We have presented a process that can expect the next maximum probable and proper words and suggest a complete sentence using predicted words. In this research, GRU-based RNN has been used on the N-gram dataset to develop the proposed model. We collected a large dataset using multiple sources in the Bangla language and also compared it to the other approaches that have been used such as LSTM, and Naive Bayes. But this suggested approach provides excellent exactness than others. Here, the Unigram model provides 88.22%, Bi-gram model is 99.24%, Tri-gram model is 97.69%, and 4-gram and 5-gram models provide 99.43% and 99.78% on average accurateness. We think that our proposed method profound impression on Bangla search engines.
文摘Cognitive grammar,as a linguistic theory that attaches importance to the relationship between language and thinking,provides us with a more comprehensive way to understand the structure,semantics and cognitive processing of noun predicate sentences.Therefore,under the framework of cognitive grammar,this paper tries to analyze the semantic connection and cognitive process in noun predicate sentences from the semantic perspective and the method of example theory,and discusses the motivation of the formation of this construction,so as to provide references for in-depth analysis of the cognitive laws behind noun predicate sentences.
文摘In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.
文摘The Ba sentence is unique existence in Chinese. There is no corresponding sentence pattern in English. Thus, the translation of Ba sentences is a challenge for translators. Even with the myriad analyses on the translation of Ba sentences, small quantity of them demonstrates the correctness and the reading effect of the translation by using a specific theory. And the image schema theory reflects the projects between the source domain and the target domain, while in the translation analysis there are schemata in the source language and the target language. So the paper does comparisons of schemata between the source text and the target text of Ba sentences, which are chosen from the English translation of Words of Fire—Poems by Jidi Majia translated by Denis Mair. After the demonstration, the following conclusions are found: First, the schema of the sentence is decided by verbs of the Ba sentences, rather than by the sentence structures;second, the image schema is a feasible tool to check correctness of Ba sentences translation.
文摘Retaining the death penalty and strict restricting the application of the death penalty is now a basic criminal policy in China, and from the judicial level, the key to the restriction of the death penalty is to study what lenient sentencing discretion the criminal has to constitute "not to execute immediately" when he has reached the standard of the immediate execution of the death penalty, to cross the chasm from the immediate execution of the death penalty to the death sentence with a reprieve. The basic process of the sentencing is to establish a baseline punishment on the basis of the social harmfulness of the activities of the criminal, and then measure the profits and losses according to the offender's personal danger. Therefore, although the social harmfulness of the activities of the criminal reaches the standard of the "most heinous crimes", due to the existence of the fault of the victim, active compensation for the victim, and the motives of the small blames and other lenient sentencing discretions, the criminal's danger has not reached the degree of "flagrance". Apply the death sentence with a two-year reprieve and even the life imprisonment generally. If there are some strict sentencing discretions, such as "the crime means is extremely cruel", carefully consider the use of the immediate execution of the death penalty. Under the circumstances of the concurrence of the sentencing, carry on the overall consideration based on the comprehensive measurement of various circumstances of the sentencing.
文摘My investigation will serve two purposes. First, I shall investigate the function of the subclauses in the corpus in relation to their complexity, and I shall establish whether there is a correlation between sentence length and sentence complexity.Second, I shall analyse the complexity of the subclauses collected from the two sections and compare the results from these sections, focusing on finite subclauses and non-finite subclauses. I hope to be able to point out some differences in style between the news and sports sections concerning the use of subordinate clauses in various syntactic functions in order to examine how the choice of linguistic structures differs in different sections of The Times.
文摘Since the opening-up policy was carried out in 1979, every facility of social modernized construction has developed at high speed; meanwhile, the need of English is increased year by year. The occasion and scope of using it are expanded with the communications among countries. Therefore, English has become the generally international language in our country; in particular, translation plays an important and irreplaceable part in English to convey information. This paper aims to introduce the contrasts of English sentences and Chinese sentences and discuss some skills of translating each other. Though it is not complete and authoritative, yet it may help some people to understand the differences between two languages and to grasp some practical skills.
基金supported by the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-006partially supported by the Shandong Provincial Natural Science Foundation,China under Grant ZR2020MF006partially supported by“the Fundamental Research Funds for the Central Universities”of China University of Petroleum(East China)under Grant 20CX05017A,18CX02139A.
文摘In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely fully analyzed,which is a major obstacle to the intelligent development of the social IoT.In this paper,we propose a sentence similarity analysis model to analyze the similarity in people’s opinions on hot topics in social media and news pages.Most of these data are unstructured or semi-structured sentences,so the accuracy of sentence similarity analysis largely determines the model’s performance.For the purpose of improving accuracy,we propose a novel method of sentence similarity computation to extract the syntactic and semantic information of the semi-structured and unstructured sentences.We mainly consider the subjects,predicates and objects of sentence pairs and use Stanford Parser to classify the dependency relation triples to calculate the syntactic and semantic similarity between two sentences.Finally,we verify the performance of the model with the Microsoft Research Paraphrase Corpus(MRPC),which consists of 4076 pairs of training sentences and 1725 pairs of test sentences,and most of the data came from the news of social data.Extensive simulations demonstrate that our method outperforms other state-of-the-art methods regarding the correlation coefficient and the mean deviation.
文摘Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similarity score between two sentences is computed as follows.First,given a sentence,two matrices are constructed accordingly,which are called the syntax model input matrix and the semantic model input matrix;one records some syntax features,and the other records some semantic features.By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices,we adopt the most effective way of constructing the matrices.Second,these two matrices are given to two neural networks,which are called the sentence model and the semantic model,respectively.The convolution process of the neural networks of the two models is carried out in multiple perspectives.The outputs of the two models are combined as a vector,which is the representation of the sentence.Third,given the representation vectors of two sentences,the similarity score of these representations is computed by a layer in the CNN.Experiment results show that our algorithm(SSCNN)surpasses the performance MPCPP,which noticeably the best recent work of using CNN for sentence similarity computation.Comparing with MPCNN,the convolution computation in SSCNN is considerably simpler.Based on the results of this work,we suggest that by further utilization of semantic and syntactic features,the performance of sentence similarity measurements has considerable potentials to be improved in the future.
文摘Text Summarization is an essential area in text mining,which has procedures for text extraction.In natural language processing,text summarization maps the documents to a representative set of descriptive words.Therefore,the objective of text extraction is to attain reduced expressive contents from the text documents.Text summarization has two main areas such as abstractive,and extractive summarization.Extractive text summarization has further two approaches,in which the first approach applies the sentence score algorithm,and the second approach follows the word embedding principles.All such text extractions have limitations in providing the basic theme of the underlying documents.In this paper,we have employed text summarization by TF-IDF with PageRank keywords,sentence score algorithm,and Word2Vec word embedding.The study compared these forms of the text summarizations with the actual text,by calculating cosine similarities.Furthermore,TF-IDF based PageRank keywords are extracted from the other two extractive summarizations.An intersection over these three types of TD-IDF keywords to generate the more representative set of keywords for each text document is performed.This technique generates variable-length keywords as per document diversity instead of selecting fixedlength keywords for each document.This form of abstractive summarization improves metadata similarity to the original text compared to all other forms of summarized text.It also solves the issue of deciding the number of representative keywords for a specific text document.To evaluate the technique,the study used a sample of more than eighteen hundred text documents.The abstractive summarization follows the principles of deep learning to create uniform similarity of extracted words with actual text and all other forms of text summarization.The proposed technique provides a stable measure of similarity as compared to existing forms of text summarization.
文摘This paper intends to analyze the six types of English imperative sentences proposed by Chen (1984) from a perspective of causal-chain windowing. It comes to the conclusions that Talmy's causal-chain windowing approach as well as the cognitive underpinnings of causal windowing and gapping is proved to be applicable in English imperative structures, and that generally speaking, the final portion of an imperative sentence is always windowed while the intermediate portions gapped.
文摘As a special construction,existential sentences(ES) are wildly used in English.However,the Chinese,having different grammatical system,master this construction with much attention,occurring different levels of mistakes during each period of learning.In this paper,the author tries to study on ES from the syntactic perspective and provide some help for English teaching through the result of an experiment.
文摘This paper aims to explore how learners of English as a second language(ESL)acquire English conditional sentences and what causes their difficulties,especially focusing on how their native languages affect their acquisition of the conditional sentences.Interviews were carried out with four undergraduate ESL students of University of Central Oklahoma in the United States who are respectively Chinese,Korean,French,and Greek.By conducting interviews with them,the participants’perceptions of acquiring English conditional sentences will be collected and analyzed.There will be some typical errors of constructing conditional sentences demonstrated.Moreover,some pedagogical implications will also be provided,which will help students have a better command of the conditional sentences.
文摘To reveal invariant properties of human languages is one of the central goals of modern generative grammar.Hierarchical feature of sentence construction, one of the key notions in this regard, reflects one of the most widely accepted invariant properties of human languages. However,researchers also challenge this point and argue that languages differ fundamentally from one another so that it is very hard to find any single structural property which they share. This paper revisits the evidence for the hierarchical structure of sentences from the principle of structure dependence in first and second language acquisition and argues that the recognition of hierarchical structure of sentences is essential to any linguistic exploration.