期刊文献+
共找到652篇文章
< 1 2 33 >
每页显示 20 50 100
Artificial Intelligence-Based Sentiment Analysis of Dynamic Message Signs that Report Fatality Numbers Using Connected Vehicle Data
1
作者 Dorcas O. Okaidjah Jonathan Wood Christopher M. Day 《Journal of Transportation Technologies》 2024年第4期590-606,共17页
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe... This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone. 展开更多
关键词 Intelligent Transportation System sentiment Analysis Dynamic Message Signs Large Language models Traffic Safety Artificial Intelligence
下载PDF
A Semi-Supervised Topic Model Incorporating Sentiment and Dynamic Characteristic
2
作者 Lanshan Zhang Xi Ding +2 位作者 Ye Tian Xiangyang Gong Wendong Wang 《China Communications》 SCIE CSCD 2016年第12期162-175,共14页
With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge am... With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge amount of user-generated contents is of great commerce value and social significance. However traditional text analysis approachesonly focus on the statistical correlation between words, but ignore the sentiment tendency and the temporal properties which may have great effects on topic detection results. This paper proposed a Dynamic Sentiment-Topic(DST) model which can not only detect and track the dynamic topics but also analyze the shift of public's sentiment tendency towards certain topic.Expectation-Maximization algorithm was used in DST model to estimate the latent distribution, and we used Gibbs sampling method to sample new document set and update the hyper parameters and distributions.Experiments are conducted on a real dataset and the results show that DST model outperforms the existing algorithms in terms of topic detection and sentiment accuracy. 展开更多
关键词 dynamic sentiment-topic model sentiment analysis topic detection
下载PDF
Combination Model for Sentiment Classification Based on Multi-feature Fusion
3
作者 Wenqing Zhao Yaqin Yang 《通讯和计算机(中英文版)》 2012年第8期890-895,共6页
关键词 朴素贝叶斯分类器 多特征融合 组合模型 情感 组合模式 选择模型 召回率 信息
下载PDF
基于文本挖掘的跑鞋用户评价及情感分析 被引量:1
4
作者 罗向东 强威 +1 位作者 张希莹 吴梦 《丝绸》 CAS CSCD 北大核心 2024年第6期108-119,共12页
为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以“京东商城”为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现... 为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以“京东商城”为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现分析、主题聚类与情感分析,从品牌、技术和售后服务的维度分析了问题的原因并提出相关建议。研究表明:国产品牌跑鞋在各价位段布局完整,销量高的跑鞋多使用满减和商品券,自营和优惠券标签对跑鞋购买具较为显著的促进作用;消费者购买跑鞋时主要关注外观细节、功能属性、性价比、穿着感受、服务优惠等方面。 展开更多
关键词 跑鞋 文本挖掘 LDA模型 聚类分析 情感分析
下载PDF
多模态方面级情感分析的多视图交互学习网络 被引量:1
5
作者 王旭阳 庞文倩 赵丽婕 《计算机工程与应用》 CSCD 北大核心 2024年第7期92-100,共9页
以往的多模态方面级情感分析方法只利用预训练模型的一般文本和图片表示,对方面和观点词相关性的识别不敏感,且不能动态获取图片信息对单词表示的贡献,因而不能充分识别多模态与方面之间的相关性。针对上述问题,提出一种多视图交互学习... 以往的多模态方面级情感分析方法只利用预训练模型的一般文本和图片表示,对方面和观点词相关性的识别不敏感,且不能动态获取图片信息对单词表示的贡献,因而不能充分识别多模态与方面之间的相关性。针对上述问题,提出一种多视图交互学习网络模型。将句子从上下文和句法两个视图上分别提取特征,以便在多模态交互时充分利用到文本的全局特征;对文本、图片和方面之间的关系进行建模,使模型实现多模态交互;同时融合不同模态的交互表示,动态获取视觉信息对文本中每个单词的贡献程度,充分提取模态与方面之间的相关性。最后通过全连接层和Softmax层获取情感分类结果。在两个数据集上进行实验,实验结果表明该模型能够有效增强多模态方面级情感分类的效果。 展开更多
关键词 多模态方面级情感分析 预训练模型 多视图学习 多模态交互 动态融合
下载PDF
特色农产品销售评价大数据的弱监督分析方法
6
作者 易文龙 张丽 +1 位作者 刘木华 程香平 《农业工程学报》 EI CAS CSCD 北大核心 2024年第12期183-192,共10页
针对特色农产品评价大数据多维度分析中,可信标签不足以及挖掘消费者各维度真实情感语义困难等问题。该研究提出了一种基于弱监督训练的深度学习方法。首先,通过主题模型分析大规模评论,提取产品评价主题和关键词。然后,结合句法依存和... 针对特色农产品评价大数据多维度分析中,可信标签不足以及挖掘消费者各维度真实情感语义困难等问题。该研究提出了一种基于弱监督训练的深度学习方法。首先,通过主题模型分析大规模评论,提取产品评价主题和关键词。然后,结合句法依存和情感词典为评论生成不同维度的伪标签。最后,构建多标签多分类深度网络,在伪标签上进行弱监督学习。结果表明,该方法在红心柚评论数据集上取得89.2%的准确率和80.3%的F1值,比随机森林算法提升了7.1个百分点的准确率和11.5个百分点的F1值。相比Transformer模型,准确率提高5.6个百分点,F1值提高2.0个百分点,参数量减少了92%。该方法能从海量评论中高效提取产品评价维度和消费者关注点,为完善农产品质量和销售服务提供数据支持。 展开更多
关键词 农产品 弱监督 多任务模型 情感分析 深度学习 大数据分析
下载PDF
融合双通道特征的中文短文本情感分类模型
7
作者 臧洁 鲁锦涛 +2 位作者 王妍 李翔 廖慧之 《计算机工程与应用》 CSCD 北大核心 2024年第21期116-126,共11页
中文短文本具有特征稀疏、歧义多、信息不规范、文本情感丰富等特点,现有基于深度学习的中文短文本情感分类模型具有提取文本特征不充分和只注重语义信息而忽视句法信息的问题。针对上述问题提出融合双通道特征的中文短文本情感分类模... 中文短文本具有特征稀疏、歧义多、信息不规范、文本情感丰富等特点,现有基于深度学习的中文短文本情感分类模型具有提取文本特征不充分和只注重语义信息而忽视句法信息的问题。针对上述问题提出融合双通道特征的中文短文本情感分类模型。预训练模型得到动态词向量,赋予模型更丰富的语言特征和明确的句法信息。双通道提取动态词向量的文本特征,上侧通道改进了DPCNN网络,提取文本丰富的长距离依赖关系;下侧通道建立双向长短期记忆网络各时间的字词特征和文本特征的多头自注意力关系,学习更加充分的文本特征,对分类结果较为关键的词汇给予更多的关注。将双通道的特征信息拼接获得最终的文本表示。实验结果表明,该分类模型在Chn-SentiCorp、微博评论和电商评论数据集的准确率分别能够达到96.54%、92.05%和94.3%,对比模型准确率平均值高2.28、2.44和1.01个百分点。融合双通道特征的中文短文本情感分类模型能有效提高文本分类准确率,为中文短文本情感分类提供了新的理论模型。 展开更多
关键词 文本情感分类 预训练模型 深度学习 注意力机制
下载PDF
基于BE-MCNN模型的新闻评论情感分析方法 被引量:1
8
作者 李文书 管平 《软件导刊》 2024年第3期1-7,共7页
实时新闻评论具有文本短、信息丰富、结构复杂等特点,情感分析难以准确捕捉其真实的情感倾向。为增强语义的特征信息,减少模型过拟合问题,提高新闻评论情感分析的准确性,提出一种融合BERT模型、Transformer En⁃coder与多尺度CNN模型的... 实时新闻评论具有文本短、信息丰富、结构复杂等特点,情感分析难以准确捕捉其真实的情感倾向。为增强语义的特征信息,减少模型过拟合问题,提高新闻评论情感分析的准确性,提出一种融合BERT模型、Transformer En⁃coder与多尺度CNN模型的新闻评论情感分析算法。首先,针对新闻评论长度较短、表达情绪观点内容较多的特点,使用BERT模型对新闻评论文本进行预训练,获得具有上下文信息的特征向量;其次,为解决模型过拟合问题,在BERT模型下游添加一层Transformer编码器;最后使用四通道双层CNN模型,通过组合不同大小尺寸的卷积核来提升模型分析新闻评论情感的性能。实验结果表明,该方法在两个新闻评论数据集上的准确率分别达到93.0%与96.4%;与不同模型的比较实验进一步证明了所提方法的有效性。 展开更多
关键词 情感分析 BERT模型 Transformer Encoder 多尺度CNN 新闻评论
下载PDF
分布式光伏开发公众评论的情感倾向及引导策略
9
作者 吕涛 孟祥蕴 《中国矿业大学学报(社会科学版)》 CSSCI 2024年第3期115-128,共14页
整县推进屋顶分布式光伏开发试点工作的实施,推动了分布式光伏的快速发展,也引发了公众在社交媒体上的热烈讨论,其中不乏有大量的负面评论。这些评论一方面映射了分布式光伏开发实际操作中存在的乱象和问题,另一方面也使公众对分布式光... 整县推进屋顶分布式光伏开发试点工作的实施,推动了分布式光伏的快速发展,也引发了公众在社交媒体上的热烈讨论,其中不乏有大量的负面评论。这些评论一方面映射了分布式光伏开发实际操作中存在的乱象和问题,另一方面也使公众对分布式光伏开发产生了极大的误解和偏见,进而阻碍了分布式光伏开发的进程。当前对分布式光伏开发公众认知和采纳意愿的研究以问卷调查为主,缺乏基于评论数据的研究。以整县推进屋顶分布式光伏开发为背景,基于抖音评论数据,利用情感分析与BERTopic主题建模方法,探讨了公众对分布式光伏开发的情感倾向及主题特征。研究结果表明,公众评论以负面为主,在时间上波动较大,且与媒体负面报道有较大的关联性,评论数量在空间上呈集中分布态势,与试点县域数量、分布式光伏开发进度密切相关;公众正面情绪主要源于国家推广力度及政府监管强度,负面情绪主要源于公众对“光伏骗局”的担忧。结合以上结果,从政府监管、舆论引导、后期保障三个方面提出了屋顶分布式光伏发展的政策建议。 展开更多
关键词 分布式光伏 公众评论 情感分析 主题建模
下载PDF
基于Kano模型的突发公共事件政务微博回应与公众信息需求适配性研究
10
作者 张立 张雪 文纪元 《情报探索》 2024年第2期33-40,共8页
【目的/意义】政府回应是政府应对突发事件时维稳民心、疏导舆论的重要举措。对公众信息需求进行精准定位并对其与政务微博回应作适配性分析,有助于总结政府回应的经验教训并明确改进策略,为提高回应效能提供参考。【方法/过程】基于公... 【目的/意义】政府回应是政府应对突发事件时维稳民心、疏导舆论的重要举措。对公众信息需求进行精准定位并对其与政务微博回应作适配性分析,有助于总结政府回应的经验教训并明确改进策略,为提高回应效能提供参考。【方法/过程】基于公众在线评论数据,采用Kano模型对公众信息需求进行具体的属性定调,分析舆情演化不同阶段下公众信息需求与政府回应适配性的差异化表征,提出提升政府回应效能的对策建议。【结果/结论】突发事件发生后公众的信息需求呈现差异化表征,公众信息需求与政府回应的适配度会直接影响回应的精准度与公众的满意度。因此,在应对突发公共舆情事件时,政府应根据公众的情感与真实需求精准调整、优化和改进回应策略,树立良好的政府形象。 展开更多
关键词 政府回应 公众信息需求 在线评论 KANO模型 情感分析
下载PDF
“一带一路”倡议的多维海外认知对比研究:基于欧洲智库文本的分析
11
作者 牛华勇 王伟豪 尹靖惠 《中国软科学》 CSSCI CSCD 北大核心 2024年第5期14-26,共13页
2023年是“一带一路”倡议提出10周年。10年来,共建“一带一路”倡议从理念到行动,从愿景到现实,已成为推动构建人类命运共同体的重要实践平台。对欧洲智库报告文本进行分析研判可以管窥欧洲对“一带一路”建设实施10年来的整体认知,对... 2023年是“一带一路”倡议提出10周年。10年来,共建“一带一路”倡议从理念到行动,从愿景到现实,已成为推动构建人类命运共同体的重要实践平台。对欧洲智库报告文本进行分析研判可以管窥欧洲对“一带一路”建设实施10年来的整体认知,对推进“一带一路”倡议下一阶段发展具有重要意义。通过对宾夕法尼亚大学(TTCSP)和Bruegel智库联合发布的《2020全球智库指数报告》中的212家欧洲智库在2013年前后至2022年9月期间公开发表的“一带一路”相关的13539份文本进行文本挖掘,探讨欧洲一流智库关于“一带一路”倡议的情感倾向和议程设置,从一个侧面观察“旋转门”机制下欧洲公共决策和舆论层的观点与立场,在总结此倡议在欧洲推进过程中所面临的潜在机遇和挑战的同时,为下一阶段“一带一路”建设中如何有效改善此倡议在海外公共舆论环境中的形象提供数据支持与参考。研究发现,欧洲智库对“一带一路”倡议整体上持中立略偏正面的态度,但不同区域和国家也存在明显差异。中东欧国家智库的看法较为正面,北欧及波罗的海国家智库则有较为明显的负面情绪,而西欧与南欧国家智库比较中立。主题建模进一步发现,由经济因素支撑的“共谋发展”论调在欧洲主流公共舆论圈具有较强的代表性。 展开更多
关键词 “一带一路”倡议 欧洲智库 文本分析 情感分析 主题建模
下载PDF
基于情绪向量的隐半马尔可夫模型股市拐点预测方法
12
作者 姚宏亮 江永生 +1 位作者 杨静 俞奎 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第10期1335-1340,共6页
股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半... 股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。 展开更多
关键词 市场情绪 情绪向量 隐半马尔可夫模型(HSMM) Kullback-Leibler(KL)距离
下载PDF
基于文本挖掘的新冠肺炎疫情下医药在线消费者的需求研究
13
作者 张丽 张祯 《运筹与管理》 CSSCI CSCD 北大核心 2024年第8期184-190,共7页
基于新冠肺炎疫情下医药电商交易规模的爆炸式增长,对医药电商在线评论进行文本分析,以某B2C医药电商平台2019—2021年在线评论数据为样本,利用LDA主题模型提取在线评论蕴含的主题,并构建情感词典融合深度学习的情感分析模型,对评论和... 基于新冠肺炎疫情下医药电商交易规模的爆炸式增长,对医药电商在线评论进行文本分析,以某B2C医药电商平台2019—2021年在线评论数据为样本,利用LDA主题模型提取在线评论蕴含的主题,并构建情感词典融合深度学习的情感分析模型,对评论和主题词进行情感分析。研究结果显示:1)消费者网购医药商品始终关注平台的可靠性、物流服务、商品价格、药品的使用效果;2)新冠肺炎疫情爆发之前,消费者对服务态度、商品品牌、购买便捷性有很大关注度;疫情爆发后对感冒类和维生素类药品关注度更高,疫情的爆发会影响消费者的购药决策;后疫情时代,消费者更关注商品性价比、购买快捷性以及药品的品质;3)消费者对于在医药电商平台进行购药整体上表现出积极正面的情感态度;4)负面在线评论主要集中在价格、药效、处方药购买、虚假宣传、物流包装、限购等方面。本研究挖掘出疫情下消费者对于网购医药商品的需求重点和痛点,对医药电商平台改善服务质量提供建设性意见。 展开更多
关键词 在线评论 文本挖掘 情感分析 LDA主题模型 COVID-19
下载PDF
基于LDA主题模型的社交媒体隐私政策合规性评价研究
14
作者 徐绪堪 李溢 唐津 《科技情报研究》 CSSCI 2024年第2期42-57,共16页
[目的/意义]在个人信息保护日渐重要的今天,开展我国社交媒体隐私政策合规性评价研究,可为完善社交媒体隐私政策和加强个人信息保护提供参考。[方法/过程]文章选取28个常用社交媒体,基于LDA主题模型、完整性评价和阅读感分析对其隐私政... [目的/意义]在个人信息保护日渐重要的今天,开展我国社交媒体隐私政策合规性评价研究,可为完善社交媒体隐私政策和加强个人信息保护提供参考。[方法/过程]文章选取28个常用社交媒体,基于LDA主题模型、完整性评价和阅读感分析对其隐私政策文本进行比较分析。[结果/结论]研究发现,随着相关信息保护法的出台,社交媒体在隐私保护、信息安全等方面已取得了积极进步,但在政策完整性、特殊群体的保护和可读性方面仍有进一步完善的空间。未来,可从法制建设和用户权利保障、特殊群体保护以及文本可读性3个方面进行完善。 展开更多
关键词 社交媒体 隐私政策 LDA主题模型 情感分析 信息保护 合规性评价
下载PDF
混合性焦虑抑郁障碍服务质量情感主题识别研究
15
作者 温廷新 徐桂颖 《情报探索》 2024年第7期10-19,共10页
[目的/意义]为识别在线医疗社区中混合性焦虑抑郁障碍患者评论医疗服务质量情感及主题,提出一种基于CNN-BiLSTM和LDA模型的服务质量情感主题识别模型。[方法/过程]首先,构建CNN-BiLSTM模型提取患者评论内外关键特征得到情感倾向分布;其... [目的/意义]为识别在线医疗社区中混合性焦虑抑郁障碍患者评论医疗服务质量情感及主题,提出一种基于CNN-BiLSTM和LDA模型的服务质量情感主题识别模型。[方法/过程]首先,构建CNN-BiLSTM模型提取患者评论内外关键特征得到情感倾向分布;其次,运用LDA主题模型提取患者正负向评论主题,结合《医院评价标准(征求意见稿)》得到医疗服务质量主题,从分布和情感词对正负向服务质量进行挖掘。[结果/结论]CNN-BiLSTM的F1值为94.43%,均优于其他对比模型;结合LDA主题模型和相关文献得到5维医疗服务质量主题及分布;根据主题情感词及分布得到负向评论产生的主要原因,为识别和改善医疗服务质量提供有效决策支持。 展开更多
关键词 在线医疗社区 服务质量 混合性焦虑抑郁障碍 情感分析 主题模型
下载PDF
基于CLIP和交叉注意力的多模态情感分析模型
16
作者 陈燕 赖宇斌 +2 位作者 肖澳 廖宇翔 陈宁江 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期42-50,共9页
针对多模态情感分析中存在的标注数据量少、模态间融合不充分以及信息冗余等问题,提出了一种基于对比语言-图片训练(CLIP)和交叉注意力(CA)的多模态情感分析(MSA)模型CLIP-CA-MSA。首先,该模型使用CLIP预训练的BERT模型、PIFT模型来提... 针对多模态情感分析中存在的标注数据量少、模态间融合不充分以及信息冗余等问题,提出了一种基于对比语言-图片训练(CLIP)和交叉注意力(CA)的多模态情感分析(MSA)模型CLIP-CA-MSA。首先,该模型使用CLIP预训练的BERT模型、PIFT模型来提取视频特征向量与文本特征;其次,使用交叉注意力机制将图像特征向量和文本特征向量进行交互,以加强不同模态之间的信息传递;最后,利用不确定性损失特征融合后计算输出最终的情感分类结果。实验结果表明:该模型比其他多模态模型准确率提高5百分点至14百分点,F1值提高3百分点至12百分点,验证了该模型的优越性,并使用消融实验验证该模型各模块的有效性。该模型能够有效地利用多模态数据的互补性和相关性,同时利用不确定性损失来提高模型的鲁棒性和泛化能力。 展开更多
关键词 情感分析 多模态学习 交叉注意力 CLIP模型 TRANSFORMER 特征融合
下载PDF
基于隐马尔可夫模型的商品信任值计算
17
作者 闵亮 黄廷辉 董俊超 《微型电脑应用》 2024年第3期37-40,共4页
融合用户在线评论文本与评价等级来计算商品信任值是构建社会化商务中信任机制的重要环节。利用长短时神经网络计算出用户评论文本的情感得分值,将其与用户评价等级值相结合得到用户综合评价观测值;利用隐马尔可夫模型建立评价信息和信... 融合用户在线评论文本与评价等级来计算商品信任值是构建社会化商务中信任机制的重要环节。利用长短时神经网络计算出用户评论文本的情感得分值,将其与用户评价等级值相结合得到用户综合评价观测值;利用隐马尔可夫模型建立评价信息和信任程度之间观测状态生成的概率矩阵,计算出不同评价观测值对应的信任程度;计算商品在最信任状态的概率值求和平均后求得商品信任值。结果表明论文提出的模型能有效提高信任计算的准确性。 展开更多
关键词 在线评论 信任计算 情感分析 隐马尔可夫模型 长短时记忆网络
下载PDF
融合大语言模型的三级联合提示隐式情感分析方法
18
作者 张小艳 闫壮 《计算机应用研究》 CSCD 北大核心 2024年第10期2900-2905,共6页
隐式情感分析作为情感分析任务的挑战性分支,面临着缺乏明确情感特征、文本语义复杂等问题。受到思维链(chain of thought,CoT)的启发,提出了一种融合大语言模型的三级联合提示隐式情感分析方法(three-level joint prompt-tuning implic... 隐式情感分析作为情感分析任务的挑战性分支,面临着缺乏明确情感特征、文本语义复杂等问题。受到思维链(chain of thought,CoT)的启发,提出了一种融合大语言模型的三级联合提示隐式情感分析方法(three-level joint prompt-tuning implicit sentiment analysis method incorporating LLMs,TPISA),将大语言模型与本地预训练模型相结合,使用多级推理的方式逐级得出目标的方面、潜在观点,使模型能够更轻松地推理出最终的情感极性。前两级提示利用大型语言模型丰富的世界知识,丰富情感语句的情感信息;然后,将前两级提示得到的方面和潜在意见与上下文连接起来,作为第三级提示的输入。同时构建情感标签词,使预训练的模型能够从标签词汇中获得丰富的语义知识,增强模型的学习能力。实验证明,提出的模型在SemEval14 Laptop和Restaurant数据集上对比当前主流的隐式情感分析模型,取得了5.65和6.72百分点的提升,验证了该方法的先进性。 展开更多
关键词 隐式情感分析 提示调优 大语言模型 多级推理
下载PDF
基于用户性格和语义-结构特征的文本评论情感分类方法
19
作者 王友卫 刘瑞 凤丽洲 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1657-1669,共13页
由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for ... 由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for Text Comments,BF_Bi GAC).依据大五人格模型能够有效表达用户性格的优势,通过计算不同维度性格得分,从评论文本中获取用户性格特征.利用双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi GRU)和卷积神经网络(Convolutional Neural Network,CNN)可以有效提取文本上下文语义特征和局部结构特征的优势,提出一种基于Bi GRU、CNN和双层注意力机制的文本语义-结构特征获取方法.为区分不同类型特征的影响,引入混合注意力层实现对用户性格特征和文本语义-结构特征的有效融合,以此获得最终的文本向量表达.在IMDB、Yelp-2、Yelp-5及Ekman四个评论数据集上的对比实验结果表明,BF_Bi GAC在分类准确率(Accuracy)和加权macro F_(1)值(F_(w))上均获得较好表现,相对于拼接Bi GRU、CNN的情感分类方法(Sentiment Classification Method Concatenating Bi GRU and CNN,Bi G-RU_CNN)在Accuracy值上分别提升0.020、0.012、0.017及0.011,相对于拼接CNN、Bi GRU的情感分类方法(Sentiment Classification Method Concatenating CNN and Bi GRU,Conv Bi LSTM)F_(w)值上分别提升0.022、0.013、0.028及0.023;相对于预训练模型BERT和Ro BERTa,BF_Bi GAC在保证分类精度的情况下获得了较高的运行效率. 展开更多
关键词 情感分类 大五人格模型 双向门控循环单元 卷积神经网络 注意力机制
下载PDF
融合双通道的语义信息的方面级情感分析
20
作者 廖列法 张文豪 《计算机工程与设计》 北大核心 2024年第7期2228-2234,共7页
针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;... 针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;使用语义注意力融合双通道中不同层次的语义信息,将融合后的语义信息再次分别融入全局信息和句子信息;根据每个通道语义信息的不同分别提取相应的特征信息。在3个基准数据集上的实验结果表明,该模型的性能优于其它模型。 展开更多
关键词 方面级情感分析 方面词 预训练模型 双通道 语义信息 语义注意力 特征信息
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部