期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
基于加权word2vec的微博情感分析 被引量:18
1
作者 李锐 张谦 刘嘉勇 《通信技术》 2017年第3期502-506,共5页
随着社交媒体的普及,微博情感分析受到了广大研究者的关注。为解决情感分析中词间语义关系缺失和词汇重要程度被忽略的问题,提出了一种基于加权词向量和支持向量机的情感分析方法,对微博的情感分析问题进行研究。首先用word2vec训练并... 随着社交媒体的普及,微博情感分析受到了广大研究者的关注。为解决情感分析中词间语义关系缺失和词汇重要程度被忽略的问题,提出了一种基于加权词向量和支持向量机的情感分析方法,对微博的情感分析问题进行研究。首先用word2vec训练并计算得到文档词向量;然后根据TFIDF算法计算文档中词汇的权重,对word2vec词向量进行加权;最后,使用SVM对情感数据进行训练和分类。在微博实验数据中,与已有方法相比,所提方法分类准确率和召回率都得到了提高。 展开更多
关键词 情感分析 word2vec 加权词向量 支持向量机
下载PDF
基于word2vec的跨领域情感分类方法 被引量:14
2
作者 王勤勤 张玉红 +1 位作者 李培培 胡学钢 《计算机应用研究》 CSCD 北大核心 2018年第10期2924-2927,共4页
情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础... 情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based on word embedding extension feature),选取高质量的领域共现特征作为桥梁,并以这些特征作为种子,基于词向量的相似度计算,将领域专有特征扩充到这些种子中,形成特征簇,从而减小领域间的差异。在SRAA和Amazon产品评论数据集上的实验结果表明了方法的有效性,尤其在数据量较大时。 展开更多
关键词 语义特征 共现特征 词向量 跨领域情感分类
下载PDF
Word2vec-CNN-Bilstm短文本情感分类 被引量:1
3
作者 王立荣 《福建电脑》 2020年第1期11-16,共6页
使用传统的神经网络的短文本分类算法对其进行情感分类易出现定位误差等问题。为了解决对短文本情感分类时存在的定位误差,本文通过将词向量模型(Word2vec)、双向长短时记忆网络模型(BiLSTM)以及卷积神经网络(CNN)按照一定的框架进行组... 使用传统的神经网络的短文本分类算法对其进行情感分类易出现定位误差等问题。为了解决对短文本情感分类时存在的定位误差,本文通过将词向量模型(Word2vec)、双向长短时记忆网络模型(BiLSTM)以及卷积神经网络(CNN)按照一定的框架进行组合,提出了Word2vec-CNN-BiLSTM的短文本情感分类模型。Word2vec-CNN-BiLSTM模型采用对预处理后的文本进行向量化表示来提取文章特征向量,并在神经网络层进行双向语义捕捉实现文本的情感分类。实验结果显示Word2vec-CNN-BiLSTM的短文本情感分类模型有效解决了对短文本分类出现的情感分类定位误差问题。 展开更多
关键词 神经网络 情感分类 词向量 短文本
下载PDF
基于Word2Vec和Bi-GRU的高职线上教评情感分析法试探
4
作者 李淼冰 王威 王成成 《广东水利电力职业技术学院学报》 2023年第3期73-77,共5页
为提高高职线上教评情感分析的准确度和效率,提出基于双向门控循环单元(Bi-GRU)网络的教评情感分析法。该方法利用Skip-gram神经网络学习教育领域特定的词嵌入向量,再利用两个相同架构的Bi-GRU网络,从不同角度实现对学生反馈的细粒度分... 为提高高职线上教评情感分析的准确度和效率,提出基于双向门控循环单元(Bi-GRU)网络的教评情感分析法。该方法利用Skip-gram神经网络学习教育领域特定的词嵌入向量,再利用两个相同架构的Bi-GRU网络,从不同角度实现对学生反馈的细粒度分析。实验结果表明,该方法内容分类和情感分类的准确度分别达到97%和95%,显著优于支持向量机(SVM)、长短时记忆网络(LSTM)等其他方法。 展开更多
关键词 教学评价 情感分析 双向门控循环单元 词嵌入向量 情感极性 细粒度分析
下载PDF
基于深度学习的微博疫情舆情文本情感分析
5
作者 吴加辉 加云岗 +4 位作者 王志晓 张九龙 闫文耀 高昂 车少鹏 《计算机技术与发展》 2024年第7期175-183,共9页
舆论情感分析重点研究公众对于公共事件的情感偏向,其中涉及公共卫生事件的舆论会直接影响社会稳定,所以对于微博的情感分析尤为重要。该文采取有关疫情方面的文本数据集,使用RoBERTa和BiGRU以及双层Attention结合的RoBERTa-BDA(RoBERTa... 舆论情感分析重点研究公众对于公共事件的情感偏向,其中涉及公共卫生事件的舆论会直接影响社会稳定,所以对于微博的情感分析尤为重要。该文采取有关疫情方面的文本数据集,使用RoBERTa和BiGRU以及双层Attention结合的RoBERTa-BDA(RoBERTa-BiGRU-Double Attention)模型作为整体结构。首先使用RoBERTa获取了蕴含文本上下文信息的词嵌入表示,其次使用BiGRU得到字符表示,然后使用注意力机制计算各个字符对于全局的影响,再使用BiGRU得到句子表示,最后使用Attention机制计算出每个字符对于其所在的句子的权重占比,得出全文的文本表示,并通过softmax函数对其进行情感分析。为了验证RoBERTa-BDA模型的有效性,设计三种实验,在不同词向量对比实验中,RoBERTa对比BERT中Macro F1和Micro F1值提高了0.42百分点和0.84百分点,在不同特征提取层模型对比实验中,BiGRU-Double Attention对比BiGRU-Attention提高了3.62百分点和1.34百分点,在跨平台对比实验中,RoBERTa-BDA在贴吧平台的Macro F1和Micro F1对比微博平台仅仅降低1.29百分点和2.88百分点。 展开更多
关键词 RoBERTa 情感分析 特征提取 词向量 注意力机制 BiGRU
下载PDF
基于BERT-TextCNN的汽车评论情感分析 被引量:1
6
作者 邹旺 张吴波 《天津理工大学学报》 2024年第1期101-108,共8页
通过基于预训练转换器(Transformer)双向编码器表征的文本卷积神经网络(text convolutional neural network model based on pre-training bidirectional encoder representations from transformer,BERT-TextCNN)模型实现汽车网站评论... 通过基于预训练转换器(Transformer)双向编码器表征的文本卷积神经网络(text convolutional neural network model based on pre-training bidirectional encoder representations from transformer,BERT-TextCNN)模型实现汽车网站评论的情感分析,其目的在于研究用户对汽车产品和汽车服务的情感态度。首先采用基于Transformer的双向编码器表征(bidirectional encoder representations from transformer,BERT)模型能有效解决汽车评论中存在的一词多义问题,并产生包含丰富信息的动态词向量,然后结合文本卷积神经网络(text convolutional neural network,TextCNN)模型中的卷积运算和池化运算提取关键特征,最后通过softmax函数计算评论文本情感的概率分布。试验结果表明,BERT-TextCNN模型在情感分类中相比几种常见的神经网络模型的精度、召回率和F1值均有所提升。 展开更多
关键词 情感分析 动态词向量 卷积运算 池化运算
下载PDF
基于微调BERT混合模型的情感分类方法
7
作者 帕丽旦·木合塔尔 郭文强 +1 位作者 买买提阿依甫 吾守尔·斯拉木 《计算机仿真》 2024年第7期522-528,564,共8页
目前情感分类任务大多使用传统的静态词向量语言模型来获取文本上下文相关信息,而这些方法不能够很好地解决兼类词一词多义的问题和分词固化导致的歧义问题,从而导致情感分类准确率不高。针对上述问题,提出了一种多特征信息融合注意力... 目前情感分类任务大多使用传统的静态词向量语言模型来获取文本上下文相关信息,而这些方法不能够很好地解决兼类词一词多义的问题和分词固化导致的歧义问题,从而导致情感分类准确率不高。针对上述问题,提出了一种多特征信息融合注意力机制和神经网络的混合模型BBLA (BERT-BiLSTM-Attention)。目的是将BERT(预训练语言表征模型)的输出层,专注于情绪分析任务中,对短文本进行向量化表示,将情感词作为词性的新特征拼接到词向量,突出并获取潜在情感信息,增加情感词位置向量,从而解决了情感词一词多义问题和双重否定的反义疑问问题。然后在双向LSTM(长短期记忆神经网络)模型加Attention(注意力机制)分别捕捉文本的双向上下文语义依赖信息,解决了个别情感词丢失问题,最后使用Softmax获取情感分析的结果。实验结果表明,所提出的混合模型在准确率上都有了明显的提高。 展开更多
关键词 情感分析 神经网络 注意力机制 词向量
下载PDF
基于位置增强词向量和GRU-CNN的方面级情感分析模型研究 被引量:1
8
作者 陶林娟 华庚兴 李波 《计算机工程与应用》 CSCD 北大核心 2024年第9期212-218,共7页
方面级情感分析旨在判断一段文本中特定方面词的情感倾向,其核心问题是方面词的上下文如何准确表征。与现有研究主要关注注意力机制的改进不同,该文从词语表征和上下文编码模型两个方面进行改进。在词语表征方面,通过BERT模型和位置度... 方面级情感分析旨在判断一段文本中特定方面词的情感倾向,其核心问题是方面词的上下文如何准确表征。与现有研究主要关注注意力机制的改进不同,该文从词语表征和上下文编码模型两个方面进行改进。在词语表征方面,通过BERT模型和位置度量公式获得增强的词向量表示;在上下文编码模型方面,使用GRU-CNN网络提取文本语义特征。在SemEval2014 Task4数据集上的实验表明,提出的模型在Restaurant和Laptop领域中的准确率分别达到了85.54%和80.35%,证实了所提出模型的有效性。 展开更多
关键词 方面级情感分析 卷积神经网络 预训练词向量 位置函数 注意力机制
下载PDF
基于句法规则与情感词的隐式特征提取
9
作者 陈可嘉 柯永诚 林鸿熙 《计算机工程与设计》 北大核心 2024年第3期740-747,共8页
针对当前句法关系研究存在过多考虑主谓关系、情感词识别能力有限、忽视隐式特征提取等方面的不足,提出一种基于句法规则与情感词的隐式特征提取方法。借助中文情感词典资源,基于外部语料与实验语料训练的词向量分别构建混合情感词典和... 针对当前句法关系研究存在过多考虑主谓关系、情感词识别能力有限、忽视隐式特征提取等方面的不足,提出一种基于句法规则与情感词的隐式特征提取方法。借助中文情感词典资源,基于外部语料与实验语料训练的词向量分别构建混合情感词典和产品特征词典,通过词典和定义的句法规则提取显式特征及情感词,根据其共现关系提取隐式特征。在相机评论语料集上进行实验并与现有方法进行对比,实验结果表明,该方法能有效提取显式及隐式特征,在获取全面特征信息上具有较好的性能。 展开更多
关键词 隐式特征 显式特征 句法规则 情感词 词向量 共现分析 产品评论
下载PDF
基于词向量的跨领域中文情感词典构建方法 被引量:13
10
作者 冯超 梁循 +2 位作者 李亚平 周小平 李晓菲 《数据采集与处理》 CSCD 北大核心 2017年第3期579-587,共9页
情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同... 情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同,一词多义现象明显。同时,不同领域中的情感词也具有专业性、领域性的特点。针对这些问题,本文提出一种基于词向量相似度的半监督情感极性判断算法(Sentiment orientation from word vector,SO-WV),并依据该算法设计出一种跨领域的中文情感词典构建方法。实验证明,本文所设计的情感词典构建方法能有效地对情感词情感倾向进行判断。算法不仅在不同领域的情感词典建立上具有良好的可移植性,同时还具有专业性、领域性的特点。 展开更多
关键词 情感分析 情感词典 词向量 跨领域
下载PDF
一种改进的带有情感信息的词向量学习方法 被引量:4
11
作者 张巍 史文鑫 +1 位作者 刘冬宁 滕少华 《计算机应用研究》 CSCD 北大核心 2017年第8期2287-2290,共4页
词语的情感信息对于情感分析任务至关重要,现有大多数基于词向量的无监督学习方法只能对词语的语法语境建模,但忽略了词语的情感信息。针对这一问题,提出了一种结合监督学习和非监督学习的词向量学习方法,既能够获得词语的语义信息又能... 词语的情感信息对于情感分析任务至关重要,现有大多数基于词向量的无监督学习方法只能对词语的语法语境建模,但忽略了词语的情感信息。针对这一问题,提出了一种结合监督学习和非监督学习的词向量学习方法,既能够获得词语的语义信息又能够获得情感内容。在相关实验中,对词向量分析作了直观的举例对比,并将该方法用于情感分类任务中,通过引入新的评论数据集对该方法进行验证。实验结果表明,融合了语义与情感的词向量方法效果良好,能更为精确地对情感信息进行分类、更为客观地对用户信息进行评价,助力社交网络良性发展。 展开更多
关键词 情感分析 词向量 语义 分类
下载PDF
基于双向长短期记忆模型的网民负面情感分类研究 被引量:36
12
作者 吴鹏 应杨 沈思 《情报学报》 CSSCI CSCD 北大核心 2018年第8期845-853,共9页
网民负面情感在网络舆情情感分析中具有重要意义,但已有研究缺乏自动化识别海量短文本中网民负面情感的多分类方法。本文利用词嵌入技术学习词语的特征表示,通过增加文本的情感特征生成具有情感意义的词向量,并训练双向长短期记忆模型... 网民负面情感在网络舆情情感分析中具有重要意义,但已有研究缺乏自动化识别海量短文本中网民负面情感的多分类方法。本文利用词嵌入技术学习词语的特征表示,通过增加文本的情感特征生成具有情感意义的词向量,并训练双向长短期记忆模型得到网民负面情感识别模型,在判断网民情感极性的基础上,识别网民的愤怒、悲伤和恐惧三种负面情感,并结合案例数据与SVM、LSTM和CNN等模型进行对比分析。实验表明,具有情感语义的词向量比词向量更适合情感分析任务;利用双向长短期记忆模型可以得到较好的情感识别效果;判断网民情感极性基础上识别网民负面情感的分类方式优于直接判断网民的负面情感的方式。 展开更多
关键词 网络舆情 负面情感分析 情感词向量 双向长短期记忆模型
下载PDF
基于词语相关度的微博新情感词自动识别 被引量:4
13
作者 陈鑫 王素格 廖健 《计算机应用》 CSCD 北大核心 2016年第2期424-427,共4页
针对微博中新情感词的识别问题,提出了一种基于词语相关度的微博新情感词自动识别方法。首先,对于分词软件把一个新词错分成几个词的问题,利用组合思想将相邻词进行合并作为新词的候选词;其次,为了充分利用词语上下文的语义信息,采用神... 针对微博中新情感词的识别问题,提出了一种基于词语相关度的微博新情感词自动识别方法。首先,对于分词软件把一个新词错分成几个词的问题,利用组合思想将相邻词进行合并作为新词的候选词;其次,为了充分利用词语上下文的语义信息,采用神经网络训练语料获得候选新词的空间表示向量;最后,利用已有的情感词典作为指导,融合基于词表集合的关联度排序和最大关联度排序算法,在候选词上筛选,获得最终的情感新词。在COAE2014(第六届中文倾向性分析评测)任务3语料上,提出的融合算法与点互信息(PMI)、增强互信息(EMI)、多词表达距离(MED)、新词语概率(NWP)以及基于词向量的新词识别方法相比,准确率至少提高了22%,说明该方法自动识别微博新情感词效果优于其他五种方法。 展开更多
关键词 情感词识别 词语相关度 词向量 排序算法 微博
下载PDF
基于标签传播的情感词典构建方法 被引量:9
14
作者 张璞 王俊霞 王英豪 《计算机工程》 CAS CSCD 北大核心 2018年第5期168-173,共6页
传统情感词典构建方法存在依赖语义知识库、覆盖率有限、领域适应性差等问题。为此,提出一种利用语料库来构建情感词典的方法。该方法选取情感种子词,在语料上训练Word2Vec词向量来选取与种子词相似度高的词语作为候选情感词,并在语料... 传统情感词典构建方法存在依赖语义知识库、覆盖率有限、领域适应性差等问题。为此,提出一种利用语料库来构建情感词典的方法。该方法选取情感种子词,在语料上训练Word2Vec词向量来选取与种子词相似度高的词语作为候选情感词,并在语料上分析与种子词具有连词关系的词语作为候选情感词。通过种子词和候选情感词之间的相似度构建语义关联图,使用标签传播算法计算情感词的极性,从而构建情感词典。实验结果表明,与基线方法相比,该方法能获得较高的准确率和较好的鲁棒性。 展开更多
关键词 情感分析 情感词典构建 词向量 连词关系 标签传播
下载PDF
一种基于字词双通道网络的文本情感分析方法 被引量:4
15
作者 李源 崔玉爽 王伟 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第6期179-186,共8页
针对传统情感分析方法存在的分类准确率低,提取信息不全面等问题,提出了一种基于字词双通道情感分析方法C-A-BiLSTM。该方法模型通过在字向量和词向量两个不同方向的通道上利用卷积神经网络进行卷积运算。其中,字向量通道提取了语义更... 针对传统情感分析方法存在的分类准确率低,提取信息不全面等问题,提出了一种基于字词双通道情感分析方法C-A-BiLSTM。该方法模型通过在字向量和词向量两个不同方向的通道上利用卷积神经网络进行卷积运算。其中,字向量通道提取了语义更加丰富的局部信息并且有效缓解了词表中未登录词的问题,而词向量通道利用词性标注技术获取对应单词的词性,解决了原始词向量面临的一词多义问题。这两个通道的结合虽高效挖掘出更深层的语义语法信息,但是无法从文本张量中筛选出关键信息,耗费了大量的算力,因此引入了Attention机制,使模型有目标性的关注重要信息并降低了计算的复杂度。文中在此基础上,通过结合双向长短记忆网络来进一步提取上下文信息,从而获得更加全面且准确的高质量文本情感特征信息。通过对比实验,结果显示,相比于传统的卷积神经网络、支持向量机以及双向长短记忆网络算法,该方法在准确率、召回率和F1值等指标均达到94%以上,而且其差错率也降低了约1%~6%,证明该方法在文本分类任务中具有较优的分析效果。 展开更多
关键词 卷积神经网络 双向长短记忆网络 文本情感分析 字向量 word-POS向量
下载PDF
停用词表对中文文本情感分类的影响 被引量:22
16
作者 王素格 魏英 《情报学报》 CSSCI 北大核心 2008年第2期175-179,共5页
本文利用三种特征选择方法、两种权重计算方法、五种停用词表以及支持向量机分类器对汽车语料的文本情感类别进行了研究。实验结果表明,不同特征选择方法、权重计算以及停用词表,对文本情感分类的影响也不尽相同;除形容词、动词和副... 本文利用三种特征选择方法、两种权重计算方法、五种停用词表以及支持向量机分类器对汽车语料的文本情感类别进行了研究。实验结果表明,不同特征选择方法、权重计算以及停用词表,对文本情感分类的影响也不尽相同;除形容词、动词和副词外的其余词语作为停用词表以及不使用停用词表对情感分类作用较大,得到的分类结果比较好;总体上,采用信息增益和布尔型权重进行中文文本情感分类的效果较好。 展开更多
关键词 停用词 文本情感分类 特征选择 支持向量机
下载PDF
停用词表对基于SVM的中文文本情感分类的影响 被引量:6
17
作者 夏火松 陶敏 +1 位作者 王一 魏翔 《情报学报》 CSSCI 北大核心 2011年第4期347-352,共6页
运用非结构化信息挖掘,对网络评论情感进行分析是一个非常重要的方法。本文基于Web客户评论情感文本,在情感文本预处理过程中使用四种不同的停用词表,采用两种不同的特征选择方法,选用著名的TF-IDF权重计算方法,使用基于RBF核函数的支... 运用非结构化信息挖掘,对网络评论情感进行分析是一个非常重要的方法。本文基于Web客户评论情感文本,在情感文本预处理过程中使用四种不同的停用词表,采用两种不同的特征选择方法,选用著名的TF-IDF权重计算方法,使用基于RBF核函数的支持向量机方法的分类器实现了对携程网上采集的4000个酒店客户评论情感文本的分类研究。通过实验,分析了不同特征选择方和停用词表的使用对客户评论文本情感分类的影响,提出了基于情感文本分类的有效的停用词表。 展开更多
关键词 客户评论 情感分类 停用词表 特征选择 支持向量机
下载PDF
基于特征加权词向量的在线医疗评论情感分析 被引量:7
18
作者 高慧颖 公孟秋 刘嘉唯 《北京理工大学学报》 CSCD 北大核心 2021年第9期999-1005,共7页
针对在线医疗评论文本具有行业专业性强、差异性大、不够规范等特点,提出一种基于特征加权词向量的在线医疗评论情感分析方法.利用Word2vec方法构建词向量模型,抽取情感词集合完善医疗服务领域情感词典,根据句法关系识别主题词与情感词... 针对在线医疗评论文本具有行业专业性强、差异性大、不够规范等特点,提出一种基于特征加权词向量的在线医疗评论情感分析方法.利用Word2vec方法构建词向量模型,抽取情感词集合完善医疗服务领域情感词典,根据句法关系识别主题词与情感词的依存关系,引入期望交叉熵因子,建立特征加权词向量模型,分析在线医疗评论的情感倾向.实验结果表明扩充的医疗服务情感词典在分析性能上的准确率、召回率以及F1值均高于基础情感词典,引入期望交叉熵因子后,基于特征加权词向量的情感分析方法在SVM分类上表现出更好的效果,体现了其在在线医疗评论挖掘领域的良好效用. 展开更多
关键词 情感分析 在线医疗评论 特征加权词向量 情感词典 主题模型
下载PDF
基于卷积神经网络的短文本情感分类 被引量:4
19
作者 代丽 樊粤湘 陈思 《计算机系统应用》 2021年第1期214-220,共7页
近年来,卷积神经网络模型常常被用于文本情感分类的研究中,但多数研究都会忽略文本特征词本身所携带的情感信息和中文文本分词时被错分的情况.针对此问题,提出一种融合情感特征的双通道卷积神经网络情感分类模型(Dual-channel Convoluti... 近年来,卷积神经网络模型常常被用于文本情感分类的研究中,但多数研究都会忽略文本特征词本身所携带的情感信息和中文文本分词时被错分的情况.针对此问题,提出一种融合情感特征的双通道卷积神经网络情感分类模型(Dual-channel Convolutional Neural Network sentiment classification model fused with Sentiment Feature,SFDCNN).该模型在构造输入时以一条通道构造融合情感特征的语义向量矩阵以获取到更多的情感类型信息,以另一条通道构造文本字向量矩阵以降低分词错误的影响.实验结果表明,SFD-CNN模型准确率高达92.94%,要优于未改进的模型. 展开更多
关键词 情感分类 卷积神经网络 词向量 情感特征 文本分析
下载PDF
基于词向量和情感本体的短文本情感分类 被引量:3
20
作者 王正成 李丹丹 《浙江理工大学学报(社会科学版)》 2018年第1期33-38,共6页
目前短文本情感分类主要采取统计自然语言处理、情感语义特性两种方式,而将这两种方式相结合进行情感分类的研究较少,故提出将这两种方式进行结合,设计基于词向量与情感本体相融合的短文本情感分类方法。首先利用Word2Vec模型训练词向量... 目前短文本情感分类主要采取统计自然语言处理、情感语义特性两种方式,而将这两种方式相结合进行情感分类的研究较少,故提出将这两种方式进行结合,设计基于词向量与情感本体相融合的短文本情感分类方法。首先利用Word2Vec模型训练词向量,以相加平均法合成短文本向量;在此基础上结合基于情感本体所得出的每条短文本的情感值,构建词向量与情感本体相融合的短文本表示模型;最后采用K最近邻分类算法完成短文本情感分类。相比传统的基于词向量、基于情感本体或其他单一技术路线的分类方法,词向量与情感本体相融合的分类方法在准确率、召回率、F1值均有明显的提升。 展开更多
关键词 短文本情感分类 词向量 情感本体
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部