情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础...情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based on word embedding extension feature),选取高质量的领域共现特征作为桥梁,并以这些特征作为种子,基于词向量的相似度计算,将领域专有特征扩充到这些种子中,形成特征簇,从而减小领域间的差异。在SRAA和Amazon产品评论数据集上的实验结果表明了方法的有效性,尤其在数据量较大时。展开更多
通过基于预训练转换器(Transformer)双向编码器表征的文本卷积神经网络(text convolutional neural network model based on pre-training bidirectional encoder representations from transformer,BERT-TextCNN)模型实现汽车网站评论...通过基于预训练转换器(Transformer)双向编码器表征的文本卷积神经网络(text convolutional neural network model based on pre-training bidirectional encoder representations from transformer,BERT-TextCNN)模型实现汽车网站评论的情感分析,其目的在于研究用户对汽车产品和汽车服务的情感态度。首先采用基于Transformer的双向编码器表征(bidirectional encoder representations from transformer,BERT)模型能有效解决汽车评论中存在的一词多义问题,并产生包含丰富信息的动态词向量,然后结合文本卷积神经网络(text convolutional neural network,TextCNN)模型中的卷积运算和池化运算提取关键特征,最后通过softmax函数计算评论文本情感的概率分布。试验结果表明,BERT-TextCNN模型在情感分类中相比几种常见的神经网络模型的精度、召回率和F1值均有所提升。展开更多
情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同...情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同,一词多义现象明显。同时,不同领域中的情感词也具有专业性、领域性的特点。针对这些问题,本文提出一种基于词向量相似度的半监督情感极性判断算法(Sentiment orientation from word vector,SO-WV),并依据该算法设计出一种跨领域的中文情感词典构建方法。实验证明,本文所设计的情感词典构建方法能有效地对情感词情感倾向进行判断。算法不仅在不同领域的情感词典建立上具有良好的可移植性,同时还具有专业性、领域性的特点。展开更多
文摘情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based on word embedding extension feature),选取高质量的领域共现特征作为桥梁,并以这些特征作为种子,基于词向量的相似度计算,将领域专有特征扩充到这些种子中,形成特征簇,从而减小领域间的差异。在SRAA和Amazon产品评论数据集上的实验结果表明了方法的有效性,尤其在数据量较大时。
文摘通过基于预训练转换器(Transformer)双向编码器表征的文本卷积神经网络(text convolutional neural network model based on pre-training bidirectional encoder representations from transformer,BERT-TextCNN)模型实现汽车网站评论的情感分析,其目的在于研究用户对汽车产品和汽车服务的情感态度。首先采用基于Transformer的双向编码器表征(bidirectional encoder representations from transformer,BERT)模型能有效解决汽车评论中存在的一词多义问题,并产生包含丰富信息的动态词向量,然后结合文本卷积神经网络(text convolutional neural network,TextCNN)模型中的卷积运算和池化运算提取关键特征,最后通过softmax函数计算评论文本情感的概率分布。试验结果表明,BERT-TextCNN模型在情感分类中相比几种常见的神经网络模型的精度、召回率和F1值均有所提升。
文摘情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同,一词多义现象明显。同时,不同领域中的情感词也具有专业性、领域性的特点。针对这些问题,本文提出一种基于词向量相似度的半监督情感极性判断算法(Sentiment orientation from word vector,SO-WV),并依据该算法设计出一种跨领域的中文情感词典构建方法。实验证明,本文所设计的情感词典构建方法能有效地对情感词情感倾向进行判断。算法不仅在不同领域的情感词典建立上具有良好的可移植性,同时还具有专业性、领域性的特点。