This paper presents a new method to increase the speed of the separated absorption, grading, charge, and multiplication avalanche photodiode (SAGCM-APD). This improvement is obtained by adding a new thin charge laye...This paper presents a new method to increase the speed of the separated absorption, grading, charge, and multiplication avalanche photodiode (SAGCM-APD). This improvement is obtained by adding a new thin charge layer between absorption and grading layers, with assuming the non-uniform electric field in different regions of the structure. In addition, a circuit model of the proposed structure is extracted, using carrier rate equations. Also, to achieve the optimum structure, it is tried to have trade-offs among thickness of the layers and have proper tuning of physical parameters. Eventually, frequency and transient response are investigated and it is shown that, in comparison with the previous conventional structure, significant improvements in gain-bandwidth product, speed and also in breakdown voltage are attained.展开更多
文摘This paper presents a new method to increase the speed of the separated absorption, grading, charge, and multiplication avalanche photodiode (SAGCM-APD). This improvement is obtained by adding a new thin charge layer between absorption and grading layers, with assuming the non-uniform electric field in different regions of the structure. In addition, a circuit model of the proposed structure is extracted, using carrier rate equations. Also, to achieve the optimum structure, it is tried to have trade-offs among thickness of the layers and have proper tuning of physical parameters. Eventually, frequency and transient response are investigated and it is shown that, in comparison with the previous conventional structure, significant improvements in gain-bandwidth product, speed and also in breakdown voltage are attained.