期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Learning a discriminative high-fidelity dictionary for single channel source separation 被引量:1
1
作者 TIAN Yuanrong WANG Xing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1097-1110,共14页
Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is... Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms. 展开更多
关键词 single channel source separation sparse representation dictionary learning DISCRIMINATION high-fidelity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部