Two multicapillary coluumns(SE 30 and Carbowax 20M)were used for high speed GC separation of positional isomers of industrial chemicals The performances of the two multicapillary columns were also evaluated,such a...Two multicapillary coluumns(SE 30 and Carbowax 20M)were used for high speed GC separation of positional isomers of industrial chemicals The performances of the two multicapillary columns were also evaluated,such as the effects of carrier velocity,column temperature and sample capacity Two typical explosive isomers(DNT and TNT)were well separated on SE 30 multicapillary column,while some important chemicals(e g xylenes,xylenols)were separated on Carbowax 20M multicapillary column at high speed The multimulticapillary column shows the feature of fast analysis,relatively lower column temperature and larger sample capacity展开更多
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am...As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.展开更多
文摘Two multicapillary coluumns(SE 30 and Carbowax 20M)were used for high speed GC separation of positional isomers of industrial chemicals The performances of the two multicapillary columns were also evaluated,such as the effects of carrier velocity,column temperature and sample capacity Two typical explosive isomers(DNT and TNT)were well separated on SE 30 multicapillary column,while some important chemicals(e g xylenes,xylenols)were separated on Carbowax 20M multicapillary column at high speed The multimulticapillary column shows the feature of fast analysis,relatively lower column temperature and larger sample capacity
基金supported by National Natural Science Foundation of China(Grant Nos.41431070,41174016,41274026,41274024,41321063)National Key Basic Research Program of China(973 Program,2012CB957703)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)The Chinese Academy of Sciences
文摘As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.