期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-artifact vector P- and S-wave separation for elastic reverse time migration
1
作者 Xi-Yan Zhou Xu Chang +3 位作者 Yi-Bo Wang Xiao-Tao Wen Jia-Chun You Chang Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2695-2710,共16页
Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessa... Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging. 展开更多
关键词 Multicomponent Elastic RTM p-and s-wave separation separation artifacts Decoupled velocity-strain equations
下载PDF
Forward modeling of ocean-bottom cable data and wave-mode separation in fluid–solid elastic media with irregular seabed 被引量:4
2
作者 Qu Ying-Ming Sun Jun-Zhi +3 位作者 Li Zhen-Chun Huang Jian-Ping Li Hai-Peng Sun Wen-Zhi 《Applied Geophysics》 SCIE CSCD 2018年第3期432-447,共16页
In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equ... In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method. 展开更多
关键词 IRREGULAR SEABED fluid-solid elastic media OCEAN bottom CABLE DATA p-and s-wave separation curvilinear coordinates
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部