Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ...Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.展开更多
Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is bei...Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined.展开更多
A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation. The nea method takes the advantage of lowe...A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation. The nea method takes the advantage of lower calcination temperature for phase formation. lower membrane sintering temperature and higher relative density over the standard ceramic method.展开更多
Disposal of produced water during petroleum extraction causes serious environmental damage, hence the need to complete the water treatment before being disposed to environment within the criteria set established by en...Disposal of produced water during petroleum extraction causes serious environmental damage, hence the need to complete the water treatment before being disposed to environment within the criteria set established by environmental agencies in the countries. Ceramics membranes have been highlighted as a good device for separating oil/water. These act as a barrier to oil in the aqueous stream, because their essential properties for filtration, such as chemical inertness, biological stability and resistance to high temperatures. The limitation of the separation process is the decay of permeate flux during operation, due to concentration polarization and fouling. In this sense, this paper aims to evaluate numerically the feasibility of the process of separating oil/water by means of ceramic membranes in the presence of a turbulent flow induced by a tangential inlet. The results of the velocity, pressure and volumetric fraction distributions for the simulations different by varying the mass flow rate inlet and different geometric characteristics of the membrane are presented and analyzed.展开更多
Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innova...Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.展开更多
An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included...An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carded out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.展开更多
The separation process of oily water using membranes has attracted the attention of researchers and engineers. The greater problem in the use of membrane separation process is the reduction in permeate flux due to clo...The separation process of oily water using membranes has attracted the attention of researchers and engineers. The greater problem in the use of membrane separation process is the reduction in permeate flux due to clogged pores by oil deposition inside the membrane or by the effect of the concentration polarization. For this purpose, a theoretical study of a water/oil separation module was performed. This device consists of a tubular ceramic membrane provided with a rectangular inlet section. Numerical simulations were performed using Ansys CFX software to solve the mass and momentum conservation equations in the fluid and porous domains. Here was adopted the RNG k-ε turbulence model. The effect of the membrane porosity and the inlet velocity of the fluid mixture on the two-phase flow behavior inside the separation module were evaluated. Results of the volumetric fraction, velocity and pressure fields of the oil and water phases are presented and analyzed. The results indicate a higher oil concentration within the membrane for the cases of higher porosity, and that the inlet fluid mixture velocity does not substantially affect the velocity profile within the separation module. It is found that the maximum separation efficiency of the module was obtained with feed velocity of 40 m/s and membrane porosity of 0.44.展开更多
Membrane-based separation is a promising technology to eliminate water impurities from the oil phase.However,it remains a great challenge to separate water from highly emulsified viscous oil owing to the high stabilit...Membrane-based separation is a promising technology to eliminate water impurities from the oil phase.However,it remains a great challenge to separate water from highly emulsified viscous oil owing to the high stability of the water droplets in oil.Herein we report a surface wettability engineering on an alumina ceramic membrane to achieve an efficient separation of a water-in-oil(W/O)emulsion.Silanes with different carbon chain lengths and fluorinated status were introduced to endow the alumina membrane with different surface wettabilities.While all the modified membranes exhibited excellent separation of the W/O without Span 80(surfactant),the one with amphiphobic wettability and lowest surface energy failed to separate the Span 80 stabilized W/O.The presence of Span 80 reduced the interfacial tension of water droplets,making them easier to deform and penetrate the modified membrane with the lowest surface energy.It reveals that engineering proper surface wettability is the key to separating the oil and water phases.Besides,the modified membranes maintained decent separation performance and stability under long-term run separation of the emulsified W/O.展开更多
This investigation demonstrates the feasibility to fabricate high quality ceramic–carbonate membranes based on mixed-conducting ceramics.Specifically,it is reported the simultaneous CO2/O2 permeation and stability pr...This investigation demonstrates the feasibility to fabricate high quality ceramic–carbonate membranes based on mixed-conducting ceramics.Specifically,it is reported the simultaneous CO2/O2 permeation and stability properties of membranes constituted by a combination of ceramic and carbonate phases,wherein the microstructure of the ceramic part is composed,in turn,of a mixture of fluorite and perovskite phases.These ceramics showed ionic and electronic conduction,and at the operation temperature,the carbonate phase of the membranes is in liquid state,which allows the transport of CO32-and O2–species via different mechanisms.To fabricate the membranes,the ceramic powders were uniaxially pressed in a disk shape.Then,an incipient sintering treatment was carried out in such a way that a highly porous ceramic was obtained.Afterwards,the piece is densified by the infiltration of molten carbonate.Characterization of the membranes was accomplished by SEM,XRD,and gas permeation techniques among others.Thermal and chemical stability under an atmosphere rich in CO2 was evaluated.CO2/O2 permeation and long-term stability measurements were conducted between 850 and 940℃.The best permeation–separation performance of membranes of about 1 mm thickness,showed a maximum permeance flux of about 4.46×10^–7 mol·m^–2·s^–1·Pa^–1 for CO2 and 2.18×10^–7 mol·m^–2·s^–1·Pa^–1 for O2 at 940℃.Membranes exhibited separation factor values of 150–991 and 49–511 for CO2/N2 and O2/N2 respectively in the studied temperature range.Despite long-term stability test showed certain microstructural changes in the membranes,no significant detriment on the permeation properties was observed along 100 h of continuous operation.展开更多
Polymeric nanomaterials,which have tuneable chemical structures,versatile functionalities,and good compatibility with polymeric matrices,have attracted increasing interest from researchers for the construction of poly...Polymeric nanomaterials,which have tuneable chemical structures,versatile functionalities,and good compatibility with polymeric matrices,have attracted increasing interest from researchers for the construction of polymeric nano-based separation membranes.With their distinctive nanofeatures,polymeric nano-based membranes show great promise in overcoming bottlenecks in polymer membranes,namely,the trade-off between permeability and selectivity,low stability,and fouling issues.Accordingly,recent studies have focused on tuning the structures and tailoring the surface properties of polymeric nano-based membranes via exploitation of membrane fabrication techniques and surface modification strategies,with the objective of pushing the performance of polymeric nano-based membranes to a new level.In this review,first,the approaches for fabricating polymeric nano-based mixed matrix membranes and homogeneous membranes are summarized,such as surface coating,phase inversion,interfacial polymerization,and self-assembly methods.Next,the manipulation strategies of membrane surface properties,namely,the hydrophilicity/hydrophobicity,charge characteristics,and surface roughness,and interior microstructural properties,namely,the pore size and content,channel construction and regulation,are comprehensively discussed.Subsequently,the separation performances of liquid ions/molecules and gas molecules through polymeric nano-based membranes are systematically reported.Finally,we conclude this review with an overview of various unsolved scientific and technical challenges that are associated with new opportunities in the development of advanced polymeric nano-based membranes.展开更多
Titanium(IV) oxide (TiO2) nanoparticles have been incorporated into mixed matrix membranes (MMMs) to improve gas separation performance. However, TiO2 nanoparticles tend to agglomerate due to high surface energy and v...Titanium(IV) oxide (TiO2) nanoparticles have been incorporated into mixed matrix membranes (MMMs) to improve gas separation performance. However, TiO2 nanoparticles tend to agglomerate due to high surface energy and van der Waals forces. This leads to precipitation which causes the formation of non-homogeneous MMM morphology. In this study, the effect of octaisobutyl polyhedral oligomeric silsesquioxane (POSS) addition on TiO2/polysulfone MMM was investigated. The aims are to enhance gas separation performance whilst preventing agglomeration of TiO2 nanoparticles. The results demonstrated that inclusion of POSS as dispersant increases MMMs’ CO2/CH4 selectivity and permeance, possibly due to less void formation and more evenly distributed pore structure. For example, synergistic addition of 5 wt% TiO2 and 5 wt% POSS increased the CO2/CH4 selectivity up to 390% compared to MMM without POSS. This is supported by elemental mapping of titanium which revealed that POSS successfully dispersed TiO2 nanoparticles and prevented aggregation. TiO2-POSS/PSf MMMs also retained their favorable thermal stability.展开更多
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222) and the Natural Science Foundation of Jiangsu Province (BK2009021, SBK200930313).
文摘Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.
基金the National Natural Science Foundation of China(20990222,21006047,21706117,and 21706118)the Natural Science Foundation of Jiangsu(BK20170978 and BK20170970)+1 种基金the State Key Laboratory of Material-Oriented Chemical Engineering(ZK201609)the Innovative Research Team Program by the Ministry of Education of China(IRT17R54).
文摘Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined.
基金the National Natural Science Foundation of China (Grant No. 59789201), the National Advanced Materials Committee of China (Grant
文摘A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation. The nea method takes the advantage of lower calcination temperature for phase formation. lower membrane sintering temperature and higher relative density over the standard ceramic method.
文摘Disposal of produced water during petroleum extraction causes serious environmental damage, hence the need to complete the water treatment before being disposed to environment within the criteria set established by environmental agencies in the countries. Ceramics membranes have been highlighted as a good device for separating oil/water. These act as a barrier to oil in the aqueous stream, because their essential properties for filtration, such as chemical inertness, biological stability and resistance to high temperatures. The limitation of the separation process is the decay of permeate flux during operation, due to concentration polarization and fouling. In this sense, this paper aims to evaluate numerically the feasibility of the process of separating oil/water by means of ceramic membranes in the presence of a turbulent flow induced by a tangential inlet. The results of the velocity, pressure and volumetric fraction distributions for the simulations different by varying the mass flow rate inlet and different geometric characteristics of the membrane are presented and analyzed.
基金supported by the National Key Research and Development Program of China(2021YF B3802600)National Key Research and Development Project of China(2018YFE0203500)the Natural Science Foundation of Jiangsu Province(BK20190603).
文摘Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.
基金supported by the National Natural Science Foundation of China(No.20275004)
文摘An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carded out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.
文摘The separation process of oily water using membranes has attracted the attention of researchers and engineers. The greater problem in the use of membrane separation process is the reduction in permeate flux due to clogged pores by oil deposition inside the membrane or by the effect of the concentration polarization. For this purpose, a theoretical study of a water/oil separation module was performed. This device consists of a tubular ceramic membrane provided with a rectangular inlet section. Numerical simulations were performed using Ansys CFX software to solve the mass and momentum conservation equations in the fluid and porous domains. Here was adopted the RNG k-ε turbulence model. The effect of the membrane porosity and the inlet velocity of the fluid mixture on the two-phase flow behavior inside the separation module were evaluated. Results of the volumetric fraction, velocity and pressure fields of the oil and water phases are presented and analyzed. The results indicate a higher oil concentration within the membrane for the cases of higher porosity, and that the inlet fluid mixture velocity does not substantially affect the velocity profile within the separation module. It is found that the maximum separation efficiency of the module was obtained with feed velocity of 40 m/s and membrane porosity of 0.44.
基金supported by the Guangzhou Science and Technology Plan(No.202102020219)National Natural Science Foundation of China(No.51908565)High-level talent research startup project of Chongqing Technology and Business University(No.2356007)。
文摘Membrane-based separation is a promising technology to eliminate water impurities from the oil phase.However,it remains a great challenge to separate water from highly emulsified viscous oil owing to the high stability of the water droplets in oil.Herein we report a surface wettability engineering on an alumina ceramic membrane to achieve an efficient separation of a water-in-oil(W/O)emulsion.Silanes with different carbon chain lengths and fluorinated status were introduced to endow the alumina membrane with different surface wettabilities.While all the modified membranes exhibited excellent separation of the W/O without Span 80(surfactant),the one with amphiphobic wettability and lowest surface energy failed to separate the Span 80 stabilized W/O.The presence of Span 80 reduced the interfacial tension of water droplets,making them easier to deform and penetrate the modified membrane with the lowest surface energy.It reveals that engineering proper surface wettability is the key to separating the oil and water phases.Besides,the modified membranes maintained decent separation performance and stability under long-term run separation of the emulsified W/O.
基金supported by Proyectos de Investigación Científica y Desarrollo Tecnológico SIP-IPN No.20190014。
文摘This investigation demonstrates the feasibility to fabricate high quality ceramic–carbonate membranes based on mixed-conducting ceramics.Specifically,it is reported the simultaneous CO2/O2 permeation and stability properties of membranes constituted by a combination of ceramic and carbonate phases,wherein the microstructure of the ceramic part is composed,in turn,of a mixture of fluorite and perovskite phases.These ceramics showed ionic and electronic conduction,and at the operation temperature,the carbonate phase of the membranes is in liquid state,which allows the transport of CO32-and O2–species via different mechanisms.To fabricate the membranes,the ceramic powders were uniaxially pressed in a disk shape.Then,an incipient sintering treatment was carried out in such a way that a highly porous ceramic was obtained.Afterwards,the piece is densified by the infiltration of molten carbonate.Characterization of the membranes was accomplished by SEM,XRD,and gas permeation techniques among others.Thermal and chemical stability under an atmosphere rich in CO2 was evaluated.CO2/O2 permeation and long-term stability measurements were conducted between 850 and 940℃.The best permeation–separation performance of membranes of about 1 mm thickness,showed a maximum permeance flux of about 4.46×10^–7 mol·m^–2·s^–1·Pa^–1 for CO2 and 2.18×10^–7 mol·m^–2·s^–1·Pa^–1 for O2 at 940℃.Membranes exhibited separation factor values of 150–991 and 49–511 for CO2/N2 and O2/N2 respectively in the studied temperature range.Despite long-term stability test showed certain microstructural changes in the membranes,no significant detriment on the permeation properties was observed along 100 h of continuous operation.
基金We are grateful for the financial support of the National Natural Science Foundation of China(Grants No.21376206,21306163,21676233,21776252 and 22125801).
文摘Polymeric nanomaterials,which have tuneable chemical structures,versatile functionalities,and good compatibility with polymeric matrices,have attracted increasing interest from researchers for the construction of polymeric nano-based separation membranes.With their distinctive nanofeatures,polymeric nano-based membranes show great promise in overcoming bottlenecks in polymer membranes,namely,the trade-off between permeability and selectivity,low stability,and fouling issues.Accordingly,recent studies have focused on tuning the structures and tailoring the surface properties of polymeric nano-based membranes via exploitation of membrane fabrication techniques and surface modification strategies,with the objective of pushing the performance of polymeric nano-based membranes to a new level.In this review,first,the approaches for fabricating polymeric nano-based mixed matrix membranes and homogeneous membranes are summarized,such as surface coating,phase inversion,interfacial polymerization,and self-assembly methods.Next,the manipulation strategies of membrane surface properties,namely,the hydrophilicity/hydrophobicity,charge characteristics,and surface roughness,and interior microstructural properties,namely,the pore size and content,channel construction and regulation,are comprehensively discussed.Subsequently,the separation performances of liquid ions/molecules and gas molecules through polymeric nano-based membranes are systematically reported.Finally,we conclude this review with an overview of various unsolved scientific and technical challenges that are associated with new opportunities in the development of advanced polymeric nano-based membranes.
基金financial support received from YUTP-FRG (No. 015 3AA-E08)FRGS (Ref. No. FRGS/1/2018/TK02/UTP/02/3, Cost Center 015MA0003)
文摘Titanium(IV) oxide (TiO2) nanoparticles have been incorporated into mixed matrix membranes (MMMs) to improve gas separation performance. However, TiO2 nanoparticles tend to agglomerate due to high surface energy and van der Waals forces. This leads to precipitation which causes the formation of non-homogeneous MMM morphology. In this study, the effect of octaisobutyl polyhedral oligomeric silsesquioxane (POSS) addition on TiO2/polysulfone MMM was investigated. The aims are to enhance gas separation performance whilst preventing agglomeration of TiO2 nanoparticles. The results demonstrated that inclusion of POSS as dispersant increases MMMs’ CO2/CH4 selectivity and permeance, possibly due to less void formation and more evenly distributed pore structure. For example, synergistic addition of 5 wt% TiO2 and 5 wt% POSS increased the CO2/CH4 selectivity up to 390% compared to MMM without POSS. This is supported by elemental mapping of titanium which revealed that POSS successfully dispersed TiO2 nanoparticles and prevented aggregation. TiO2-POSS/PSf MMMs also retained their favorable thermal stability.