Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration duri...Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%-10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins.展开更多
基金financially supported by the China Scholarship Council and the National Natural Science Foundation of China(No.20874004)
文摘Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%-10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins.