期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Wettability Modification for Biosurface of Titanium Alloy by Means of Sequential Carburization 被引量:7
1
作者 Yong Luo~(1,2) Shi-rong Ge~1 Zhong-min Jin~21.Institute of Tribology and Reliability Engineering,School of Material Science and Engineering,China University of Mining and Technology,Xuzhou 221008,P.R China2.Institute of Medical and Biological Engineering,School of Mechanical Engineering,University of Leeds,Leeds LS2 9JT,UK 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期219-223,共5页
Microporous titanium carbide coating was successfully synthesized on medical grade titanium alloy by using sequential carburization.Changes in the surface morphology of titanium alloy occasioned by sequential carburiz... Microporous titanium carbide coating was successfully synthesized on medical grade titanium alloy by using sequential carburization.Changes in the surface morphology of titanium alloy occasioned by sequential carburization were characterized and the wettability characteristics were quantified.Furthermore,the dispersion forces were calculated and discussed.The results indicate that sequential carburization is an effective way to modify the wettability of titanium alloy.After the carburization the surface dispersion force of titanium alloy increased from 76.5×10^(-3)J·m^(-2) to 105.5×10^(-3) J·m^(-2),with an enhancement of 37.9 %.Meanwhile the contact angle of titanium alloy decreased from 83° to 71.5°,indicating a significant improvement of wettability,which is much closer to the optimal water contact angle for cell adhesion of 70°. 展开更多
关键词 BIOTRIBOLOGY WETTABILITY titanium alloy sequential carburization biosurface
下载PDF
Effect of Carburization on the Mechanical Properties of Biomedical Grade Titanium Alloys 被引量:8
2
作者 Yong Luo Haibo Jiang +1 位作者 Gang Cheng Hongtao Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期86-89,共4页
Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity... Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity. 展开更多
关键词 titanium alloys HARDNESS SURFACES CERAMICS sequential carburization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部