A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectivel...A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.展开更多
The problem of sequential fault diagnosis is to construct a diagnosis tree that can isolate the failure sources with minimal test cost. Pervious sequential fault diagnosis strategy generating algorithms only consider ...The problem of sequential fault diagnosis is to construct a diagnosis tree that can isolate the failure sources with minimal test cost. Pervious sequential fault diagnosis strategy generating algorithms only consider the execution cost at application stage, which may result in a solution with poor quality from the view of life cycle cost. Furthermore, due to the fact that uncertain information exists extensively in the real-world systems, the tests are always imperfect. In order to reduce the cost of fault diagnosis in the realistic systems, the sequential fault diagnosis problem with imperfect tests considering life cycle cost is presented and formulated in this work, which is an intractable NP-hard AND/OR decision tree construction problem. An algorithm based on AND/OR graph search is proposed to solve this problem. Heuristic search based on information theory is applied to generate the sub-tree in the algorithm. Some practical issues such as the method to improve the computational efficiency and the diagnosis strategy with multi-outcome tests are discussed. The algorithm is tested and compared with previous algorithms on the simulated systems with different scales and uncertainty. Application on a wheel momentum system of a spacecraft is studied in detail. Both the simulation and application results suggest that the cost of the diagnosis strategy can be reduced significantly by using the proposed algorithm, especially when the placement cost of the tests constitutes a large part of the total cost.展开更多
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption...In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.展开更多
Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the...Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.展开更多
基金Sci-Tech Planning Projects of Chongqing City,China(No.CSTC2007AA7003).
文摘A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.
基金Project(C1320063131)supported by China Civil Space Foundation
文摘The problem of sequential fault diagnosis is to construct a diagnosis tree that can isolate the failure sources with minimal test cost. Pervious sequential fault diagnosis strategy generating algorithms only consider the execution cost at application stage, which may result in a solution with poor quality from the view of life cycle cost. Furthermore, due to the fact that uncertain information exists extensively in the real-world systems, the tests are always imperfect. In order to reduce the cost of fault diagnosis in the realistic systems, the sequential fault diagnosis problem with imperfect tests considering life cycle cost is presented and formulated in this work, which is an intractable NP-hard AND/OR decision tree construction problem. An algorithm based on AND/OR graph search is proposed to solve this problem. Heuristic search based on information theory is applied to generate the sub-tree in the algorithm. Some practical issues such as the method to improve the computational efficiency and the diagnosis strategy with multi-outcome tests are discussed. The algorithm is tested and compared with previous algorithms on the simulated systems with different scales and uncertainty. Application on a wheel momentum system of a spacecraft is studied in detail. Both the simulation and application results suggest that the cost of the diagnosis strategy can be reduced significantly by using the proposed algorithm, especially when the placement cost of the tests constitutes a large part of the total cost.
基金supported by National Natural Science Foundation of China (Grant No. 50875016, 51075023)Fundamental Research Funds for the Central Universities of China (Grant No. JD0903, JD0904)
文摘In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.
基金supported by China Civil Space Foundation(No.C1320063131)
文摘Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.