期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep Sequential Feature Learning in Clinical Image Classification of Infectious Keratitis 被引量:1
1
作者 Yesheng Xu Ming Kong +7 位作者 Wenjia Xie Runping Duan Zhengqing Fang Yuxiao Lin Qiang Zhu Siliang Tang Fei Wu Yu-Feng Yao 《Engineering》 SCIE EI 2021年第7期1002-1010,共9页
Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency ... Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency for which a rapid and accurate diagnosis is needed to ensure prompt and precise treatment to halt the disease progression and to limit the extent of corneal damage;otherwise,it may develop a sight-threatening and even eye-globe-threatening condition.In this paper,we propose a sequentiallevel deep model to effectively discriminate infectious corneal disease via the classification of clinical images.In this approach,we devise an appropriate mechanism to preserve the spatial structures of clinical images and disentangle the informative features for clinical image classification of infectious keratitis.In a comparison,the performance of the proposed sequential-level deep model achieved 80%diagnostic accuracy,far better than the 49.27%±11.5%diagnostic accuracy achieved by 421 ophthalmologists over 120 test images. 展开更多
关键词 Deep learning Corneal disease sequential features Machine learning Long short-term memory
下载PDF
Learning Dual-Layer User Representation for Enhanced Item Recommendation
2
作者 Fuxi Zhu Jin Xie Mohammed Alshahrani 《Computers, Materials & Continua》 SCIE EI 2024年第7期949-971,共23页
User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated... User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data,and thus cannot be measured directly.Text-based data models can learn user representations by mining latent semantics,which is beneficial to enhancing the semantic function of user representations.However,these technologies only extract common features in historical records and cannot represent changes in user intentions.However,sequential feature can express the user’s interests and intentions that change time by time.But the sequential recommendation results based on the user representation of the item lack the interpretability of preference factors.To address these issues,we propose in this paper a novel model with Dual-Layer User Representation,named DLUR,where the user’s intention is learned based on two different layer representations.Specifically,the latent semantic layer adds an interactive layer based on Transformer to extract keywords and key sentences in the text and serve as a basis for interpretation.The sequence layer uses the Transformer model to encode the user’s preference intention to clarify changes in the user’s intention.Therefore,this dual-layer user mode is more comprehensive than a single text mode or sequence mode and can effectually improve the performance of recommendations.Our extensive experiments on five benchmark datasets demonstrate DLUR’s performance over state-of-the-art recommendation models.In addition,DLUR’s ability to explain recommendation results is also demonstrated through some specific cases. 展开更多
关键词 User representation latent semantic sequential feature INTERPRETABILITY
下载PDF
Framework Development Using Data Mining Techniques to Predict Mortality Risk during Pandemic
3
作者 Debjany Chakraborty Md Musfique Anwar 《Journal of Computer and Communications》 2022年第8期18-25,共8页
The corona virus, which causes the respiratory infection Covid-19, was first detected in late 2019. It then spread quickly across the globe in the first months of 2020, reaching more than 15 million confirmed cases by... The corona virus, which causes the respiratory infection Covid-19, was first detected in late 2019. It then spread quickly across the globe in the first months of 2020, reaching more than 15 million confirmed cases by the second half of July. This global impact of the novel coronavirus (COVID-19) requires accurate forecasting about the spread of confirmed cases as well as continuation of analysis of the number of deaths and recoveries. Forecasting requires a huge amount of data. At the same time, forecasts are highly influenced by the reliability of the data, vested interests, and what variables are being predicted. Again, human behavior plays an important role in efficiently controling the spread of novel coronavirus. This paper introduces a sustainable approach for predicting the mortality risk during the pandemic to help medical decision making and raise public health awareness. This paper describes the range of symptoms for corona virus suffered patients and the ways of predicting patient mortality rate based on their symptoms. 展开更多
关键词 sequential forward feature Selection Symptom Categorization Decision Tree Attribute Selection Measure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部