Presents information on a study which proposed a superlinearly convergent algorithm of sequential systems of linear equations or nonlinear optimization problems with inequality constraints. Assumptions; Discussion on ...Presents information on a study which proposed a superlinearly convergent algorithm of sequential systems of linear equations or nonlinear optimization problems with inequality constraints. Assumptions; Discussion on lemmas about several matrices related to the common coefficient matrix F; Strengthening of the regularity assumptions on the functions involved; Numerical experiments.展开更多
Industrial robots are increasingly used for five-axis machining operations, where the rotation of the end effector along the toolaxis direction is functionally redundant. This functional redundancy should be carefully...Industrial robots are increasingly used for five-axis machining operations, where the rotation of the end effector along the toolaxis direction is functionally redundant. This functional redundancy should be carefully resolved when planning the robot path according to the tool path generated by a computer-aided manufacturing(CAM) system. Improper planning of the redundancy may cause drastic variations of the joint motions, which could significantly decrease the machining efficiency as well as the machining accuracy. To tackle this problem, this paper presents a new optimization-based methodology to globally resolve the functional redundancy for the robotic milling process. Firstly, a global performance index concerning the smoothness of the robot path at the joint acceleration level is proposed. By minimizing the smoothness performance index while considering the avoidance of joint limits and the singularity and the constraint of the stiffness performance, the resolution of the redundancy is formulated as a constrained optimization problem. To efficiently solve the problem, the sequential linearization programming method is employed to improve the initial solution provided by the conventional graph-based method. Then, simulations for a given tool path are presented. Compared with the graph-based method, the proposed method can generate a smoother robot path in which a significant reduction of the magnitude of the maximum joint acceleration is obtained, resulting in a smoother tool-tip feedrate profile. Finally, the experiment on the robotic milling system is also presented. The results show that the optimized robot path of the proposed method obtains better surface quality and higher machining efficiency, which verifies the effectiveness of the proposed method.展开更多
基金This research was supported by the National Natural Science Foundation of China(19571001, 19971002, 79970014) Cross-century Excellent Personnel Award and Teaching and Research Award Program for Outstanding Young Teachers in High Education Ministry o
文摘Presents information on a study which proposed a superlinearly convergent algorithm of sequential systems of linear equations or nonlinear optimization problems with inequality constraints. Assumptions; Discussion on lemmas about several matrices related to the common coefficient matrix F; Strengthening of the regularity assumptions on the functions involved; Numerical experiments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51822506,91648104&51535004)the Shanghai Rising-Star Program (Grant No. 17QA1401900)the Science&Technology Commission of Shanghai Municipality (Grant No. 18XD1421800)。
文摘Industrial robots are increasingly used for five-axis machining operations, where the rotation of the end effector along the toolaxis direction is functionally redundant. This functional redundancy should be carefully resolved when planning the robot path according to the tool path generated by a computer-aided manufacturing(CAM) system. Improper planning of the redundancy may cause drastic variations of the joint motions, which could significantly decrease the machining efficiency as well as the machining accuracy. To tackle this problem, this paper presents a new optimization-based methodology to globally resolve the functional redundancy for the robotic milling process. Firstly, a global performance index concerning the smoothness of the robot path at the joint acceleration level is proposed. By minimizing the smoothness performance index while considering the avoidance of joint limits and the singularity and the constraint of the stiffness performance, the resolution of the redundancy is formulated as a constrained optimization problem. To efficiently solve the problem, the sequential linearization programming method is employed to improve the initial solution provided by the conventional graph-based method. Then, simulations for a given tool path are presented. Compared with the graph-based method, the proposed method can generate a smoother robot path in which a significant reduction of the magnitude of the maximum joint acceleration is obtained, resulting in a smoother tool-tip feedrate profile. Finally, the experiment on the robotic milling system is also presented. The results show that the optimized robot path of the proposed method obtains better surface quality and higher machining efficiency, which verifies the effectiveness of the proposed method.