Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of Se...Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.展开更多
Objective:To compare clinical pregnancy rates following sequential day-3 and day-5 embryo transfer with double or sequential cleavage-stage transfers.Methods:This study enrolled 242 patients undergoing gonadotropin-re...Objective:To compare clinical pregnancy rates following sequential day-3 and day-5 embryo transfer with double or sequential cleavage-stage transfers.Methods:This study enrolled 242 patients undergoing gonadotropin-releasing hormone antagonist protocol and fresh embryo transfer.Basal follicle stimulating hormone,luteinizing hormone,serum estradiol and anti-Müllerian hormone levels and controlled ovarian stimulation outcomes were noted.Of 242 women,135 underwent double embryo transfer on day 2 or day 3(the double group),54 women underwent sequential embryo transfer on day 2 and day 3(the D2/D3 group),and 53 underwent sequential embryo transfer on day 3 and day 5(the D3/D5 group).Clinical pregnancy rates were compared among the groups.Results:Female age,body mass index,basal follicle stimulating hormone,luteinizing hormone and estradiol levels were similar among the groups(P>0.05).The D3/D5 group had a significantly higher number of metaphaseⅡoocytes,fertilized oocytes and good quality embryos on day 3 compared with the double group and the D2/D3 group(P<0.001).Clinical pregnancy rates in the double,D2/D3 and D3/D5 groups were 26.6%(36/135),16.6%(9/54)and 37.7%(20/53),respectively.There was no significant difference in clinical pregnancy rates between the double group and the D2/D3 group(P=0.204)or the D3/D5 group(P=0.188).The D3/D5 group had significantly higher clinical pregnancy rates compared with the D2/D3 group(P=0.025).Conclusions:Sequential cleavage-stage transfer(D2/D3)or cleavage stage and blastocyst transfer(D3/D5)does not improve clinical pregnancy rates compared with double cleavage-stage embryo transfer.Although sequential transfer seems to be an effective option in certain patient populations,routine application of this technique might not be a suitable approach in an unselected population to improve assisted reproductive technology outcomes.展开更多
The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The ...The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The structural, electronic, antioxidant and UV absorption properties of drometrizole (PBT) and designed ortho-substituted derivatives are reported via DFT and TD-DFT in the gas and aqueous phases. DFT and TD-DFT computations were performed at the M062x-D3Zero/6-311++G(d,p)//B97-3c and PBE0-D3(BJ)/def2-TZVP levels of theory respectively. Reaction enthalpies related to hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were computed and compared with those of phenol. Results show that the presence of -NH2 substituent reduces the O-H bond dissociation enthalpy and ionization potential, while that of -CN increases the proton affinity. The HAT and SPLET mechanisms are the most plausible in the gas and aqueous phases respectively. The molecule with the -NH2 substituent (PBT1) was identified to be the compound with the highest antioxidant activity. The UV spectra of the studied compounds are characterized by two bands in the 280 - 400 nm regions. Results from this study provide a better comprehension antioxidant mechanism of drometrizole and present a new perspective for the design of electron-donor antioxidant molecules with enhanced antioxidant-photoprotective efficiencies for applications in commercial sunscreens.展开更多
Sequential energy transfer is ubiquitous in natural light-harvesting systems(LHSs),which greatly promotes the exploitation of light energy.The LHSs in nature are sophisticated supramolecular assemblies of chlorophyll ...Sequential energy transfer is ubiquitous in natural light-harvesting systems(LHSs),which greatly promotes the exploitation of light energy.The LHSs in nature are sophisticated supramolecular assemblies of chlorophyll molecules that carry out efficient light harvesting through cascade energy transfer process.Inspired by nature,scientists have paid much attention to fabricate stepwise LHSs based on assorted supramolecular scaffolds in recent years.Light-harvesting antennas and energy acceptors can be accommodated in particular scaffolds,which offer great convenience for energy transfer between them.These systems not only further mimic photosynthesis,but also demonstrate many potential applications,such as photocatalysis,tunable luminescence,and information encryption,etc.In this review article,aiming at offering a practical guide to this emerging research field,the introduction of construction strategies towards sequential LHSs will be presented.Different scaffolds are classified and highlighted,including host-guest assemblies,metal-coordination assemblies,as well as bio-macromolecular and other supramolecular scaffolds.展开更多
In this study, the antioxidative (3-methyl-2-butenyl caffeate), BC efficiency of CAPE (caffeic acid phenethyl ester) and four of its derivatives (MBC (benzoic caffeate), P3HC (phenethyl-3-hydroxy-cinnamate) a...In this study, the antioxidative (3-methyl-2-butenyl caffeate), BC efficiency of CAPE (caffeic acid phenethyl ester) and four of its derivatives (MBC (benzoic caffeate), P3HC (phenethyl-3-hydroxy-cinnamate) and P4HC (phenethyl-4-hydroxy-cinnamate)) are compared in vacuum and in seven solvents. It turned out that the AA (antioxidant activity) in increasing order was P3HC 〈 P4HC 〈 CAPE 〈 MBC. Effects of solvents on the structure and the antioxidant activity of P3HC, P4HC, BC, MBC and CAPE, were studied at 133LYP/6-31G (d, p) then B3LYP/6-3 I+G (d, p) level of theory using the conductor polarized continuum model methods. Thermodynamically, the authors showed that solvent effects on bond dissociation enthalpy are very weak (within 25 kJ/mol), but sufficient to influence hydrogen bonds, O-H bond lengths and showed the preferential sites of hydrogen atom cleavage. In addition, solvent notably influences and changes the nature of the scavenging process of ROS (reactive oxygen species), favouring by this way the HHAT (homolytic hydrogen atom transfer) in non polar solvents, the SPLET (sequential proton loss electron transfer) in polar solvents. Moreover, in chloroform and for the five molecules studied the SET-PT (sequential electron transfer proton transfer) mechanism is preferred compared to the HHAT, because in this solvent the IP is lower than the BDE. TD-DFT calculations revealed that solvent induce a bathochromic effect (red-shift of the wavelengths) coupled to hyperchromic or hypochromic effects.展开更多
Herein, we report the first visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO_(2)to synthesize hydroxy acid derivatives. A variety of valuable β-, γ-, δ-, ε–hydroxy acid derivatives are ob...Herein, we report the first visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO_(2)to synthesize hydroxy acid derivatives. A variety of valuable β-, γ-, δ-, ε–hydroxy acid derivatives are obtained in moderate to high yields under mild conditions. This protocol shows noteworthy functionalgroup compatibility, high chemo-and regioselectivities under transition-metal-free conditions with an inexpensive organo-dye as photosensitizer. Mechanistic studies indicate that the benzylic carbanion is generated as an intermediate via the sequential single electron transfer(SSET) process.展开更多
Photosynthesis is the basis for the survival of organisms in nature;consequently,the fabrication of artificial light-harvesting systems(LHSs)that simulate natural photosynthesis is of significant interest.Recently,a v...Photosynthesis is the basis for the survival of organisms in nature;consequently,the fabrication of artificial light-harvesting systems(LHSs)that simulate natural photosynthesis is of significant interest.Recently,a variety of artificial LHSs have been successfully constructed using fluorescence resonance energy transfer(FRET).However,it is crucial to fabricate artificial LHSs with a sequential energy transfer process when considering that the natural photosynthetic process involves a multistep sequential energy transfer process rather than a simple one-step energy transfer.Moreover,many previously reported LHSs have been used as imaging agents for cell labeling and bioimaging or as catalysts in photocatalytic reactions,showing promise for applications simulating natural photosynthesis.In this review,we have summarized recently published representative work on artificial LHSs.In addition,the application of LHSs in photocatalysis and cell labeling has been described in detail.展开更多
文摘Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.
文摘Objective:To compare clinical pregnancy rates following sequential day-3 and day-5 embryo transfer with double or sequential cleavage-stage transfers.Methods:This study enrolled 242 patients undergoing gonadotropin-releasing hormone antagonist protocol and fresh embryo transfer.Basal follicle stimulating hormone,luteinizing hormone,serum estradiol and anti-Müllerian hormone levels and controlled ovarian stimulation outcomes were noted.Of 242 women,135 underwent double embryo transfer on day 2 or day 3(the double group),54 women underwent sequential embryo transfer on day 2 and day 3(the D2/D3 group),and 53 underwent sequential embryo transfer on day 3 and day 5(the D3/D5 group).Clinical pregnancy rates were compared among the groups.Results:Female age,body mass index,basal follicle stimulating hormone,luteinizing hormone and estradiol levels were similar among the groups(P>0.05).The D3/D5 group had a significantly higher number of metaphaseⅡoocytes,fertilized oocytes and good quality embryos on day 3 compared with the double group and the D2/D3 group(P<0.001).Clinical pregnancy rates in the double,D2/D3 and D3/D5 groups were 26.6%(36/135),16.6%(9/54)and 37.7%(20/53),respectively.There was no significant difference in clinical pregnancy rates between the double group and the D2/D3 group(P=0.204)or the D3/D5 group(P=0.188).The D3/D5 group had significantly higher clinical pregnancy rates compared with the D2/D3 group(P=0.025).Conclusions:Sequential cleavage-stage transfer(D2/D3)or cleavage stage and blastocyst transfer(D3/D5)does not improve clinical pregnancy rates compared with double cleavage-stage embryo transfer.Although sequential transfer seems to be an effective option in certain patient populations,routine application of this technique might not be a suitable approach in an unselected population to improve assisted reproductive technology outcomes.
文摘The demand and pursuit of chemical entities with UV filtration and antioxidant properties for enhanced photoprotection have been driven in recent times by acute exposure of humans to solar ultraviolet radiations. The structural, electronic, antioxidant and UV absorption properties of drometrizole (PBT) and designed ortho-substituted derivatives are reported via DFT and TD-DFT in the gas and aqueous phases. DFT and TD-DFT computations were performed at the M062x-D3Zero/6-311++G(d,p)//B97-3c and PBE0-D3(BJ)/def2-TZVP levels of theory respectively. Reaction enthalpies related to hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were computed and compared with those of phenol. Results show that the presence of -NH2 substituent reduces the O-H bond dissociation enthalpy and ionization potential, while that of -CN increases the proton affinity. The HAT and SPLET mechanisms are the most plausible in the gas and aqueous phases respectively. The molecule with the -NH2 substituent (PBT1) was identified to be the compound with the highest antioxidant activity. The UV spectra of the studied compounds are characterized by two bands in the 280 - 400 nm regions. Results from this study provide a better comprehension antioxidant mechanism of drometrizole and present a new perspective for the design of electron-donor antioxidant molecules with enhanced antioxidant-photoprotective efficiencies for applications in commercial sunscreens.
基金the National Natural Science Foundation of China(No.21702020)is gratefully acknowledged。
文摘Sequential energy transfer is ubiquitous in natural light-harvesting systems(LHSs),which greatly promotes the exploitation of light energy.The LHSs in nature are sophisticated supramolecular assemblies of chlorophyll molecules that carry out efficient light harvesting through cascade energy transfer process.Inspired by nature,scientists have paid much attention to fabricate stepwise LHSs based on assorted supramolecular scaffolds in recent years.Light-harvesting antennas and energy acceptors can be accommodated in particular scaffolds,which offer great convenience for energy transfer between them.These systems not only further mimic photosynthesis,but also demonstrate many potential applications,such as photocatalysis,tunable luminescence,and information encryption,etc.In this review article,aiming at offering a practical guide to this emerging research field,the introduction of construction strategies towards sequential LHSs will be presented.Different scaffolds are classified and highlighted,including host-guest assemblies,metal-coordination assemblies,as well as bio-macromolecular and other supramolecular scaffolds.
文摘In this study, the antioxidative (3-methyl-2-butenyl caffeate), BC efficiency of CAPE (caffeic acid phenethyl ester) and four of its derivatives (MBC (benzoic caffeate), P3HC (phenethyl-3-hydroxy-cinnamate) and P4HC (phenethyl-4-hydroxy-cinnamate)) are compared in vacuum and in seven solvents. It turned out that the AA (antioxidant activity) in increasing order was P3HC 〈 P4HC 〈 CAPE 〈 MBC. Effects of solvents on the structure and the antioxidant activity of P3HC, P4HC, BC, MBC and CAPE, were studied at 133LYP/6-31G (d, p) then B3LYP/6-3 I+G (d, p) level of theory using the conductor polarized continuum model methods. Thermodynamically, the authors showed that solvent effects on bond dissociation enthalpy are very weak (within 25 kJ/mol), but sufficient to influence hydrogen bonds, O-H bond lengths and showed the preferential sites of hydrogen atom cleavage. In addition, solvent notably influences and changes the nature of the scavenging process of ROS (reactive oxygen species), favouring by this way the HHAT (homolytic hydrogen atom transfer) in non polar solvents, the SPLET (sequential proton loss electron transfer) in polar solvents. Moreover, in chloroform and for the five molecules studied the SET-PT (sequential electron transfer proton transfer) mechanism is preferred compared to the HHAT, because in this solvent the IP is lower than the BDE. TD-DFT calculations revealed that solvent induce a bathochromic effect (red-shift of the wavelengths) coupled to hyperchromic or hypochromic effects.
基金the National Natural Science Foundation of China (Nos. 22225106, 22301193)Fundamental Research Funds from Sichuan University (No. 2020SCUNL102)the Fundamental Research Funds for the Central Universities。
文摘Herein, we report the first visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO_(2)to synthesize hydroxy acid derivatives. A variety of valuable β-, γ-, δ-, ε–hydroxy acid derivatives are obtained in moderate to high yields under mild conditions. This protocol shows noteworthy functionalgroup compatibility, high chemo-and regioselectivities under transition-metal-free conditions with an inexpensive organo-dye as photosensitizer. Mechanistic studies indicate that the benzylic carbanion is generated as an intermediate via the sequential single electron transfer(SSET) process.
基金support from the Natural Science Foun-dation of Shandong Province(ZR2020MB018 and ZR2021QB049).
文摘Photosynthesis is the basis for the survival of organisms in nature;consequently,the fabrication of artificial light-harvesting systems(LHSs)that simulate natural photosynthesis is of significant interest.Recently,a variety of artificial LHSs have been successfully constructed using fluorescence resonance energy transfer(FRET).However,it is crucial to fabricate artificial LHSs with a sequential energy transfer process when considering that the natural photosynthetic process involves a multistep sequential energy transfer process rather than a simple one-step energy transfer.Moreover,many previously reported LHSs have been used as imaging agents for cell labeling and bioimaging or as catalysts in photocatalytic reactions,showing promise for applications simulating natural photosynthesis.In this review,we have summarized recently published representative work on artificial LHSs.In addition,the application of LHSs in photocatalysis and cell labeling has been described in detail.