In the area of time series modelling, several applications are encountered in real-life that involve analysis of count time series data. The distribution characteristics and dependence structure are the major issues t...In the area of time series modelling, several applications are encountered in real-life that involve analysis of count time series data. The distribution characteristics and dependence structure are the major issues that arise while specifying a modelling strategy to handle the analysis of those kinds of data. Owing to the numerous applications there is a need to develop models that can capture these features. However, accounting for both aspects simultaneously presents complexities while specifying a modeling strategy. In this paper, an alternative statistical model able to deal with issues of discreteness, overdispersion, serial correlation over time is proposed. In particular, we adopt a branching mechanism to develop a first-order stationary negative binomial autoregressive model. Inference is based on maximum likelihood estimation and a simulation study is conducted to evaluate the performance of the proposed approach. As an illustration, the model is applied to a real-life dataset in crime analysis.展开更多
文摘In the area of time series modelling, several applications are encountered in real-life that involve analysis of count time series data. The distribution characteristics and dependence structure are the major issues that arise while specifying a modelling strategy to handle the analysis of those kinds of data. Owing to the numerous applications there is a need to develop models that can capture these features. However, accounting for both aspects simultaneously presents complexities while specifying a modeling strategy. In this paper, an alternative statistical model able to deal with issues of discreteness, overdispersion, serial correlation over time is proposed. In particular, we adopt a branching mechanism to develop a first-order stationary negative binomial autoregressive model. Inference is based on maximum likelihood estimation and a simulation study is conducted to evaluate the performance of the proposed approach. As an illustration, the model is applied to a real-life dataset in crime analysis.