The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa...The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.展开更多
Higher requirements for the accuracy of relevant models are put throughout the transformation and upgrade of the iron and steel sector to intelligent production.It has been difficult to meet the needs of the field wit...Higher requirements for the accuracy of relevant models are put throughout the transformation and upgrade of the iron and steel sector to intelligent production.It has been difficult to meet the needs of the field with the usual prediction model of mechanical properties of hotrolled strip.Insufficient data and difficult parameter adjustment limit deep learning models based on multi-layer networks in practical applications;besides,the limited discrete process parameters used make it impossible to effectively depict the actual strip processing process.In order to solve these problems,this research proposed a new sampling approach for mechanical characteristics input data of hot-rolled strip based on the multi-grained cascade forest(gcForest)framework.According to the characteristics of complex process flow and abnormal sensitivity of process path and parameters to product quality in the hot-rolled strip production,a three-dimensional continuous time series process data sampling method based on time-temperature-deformation was designed.The basic information of strip steel(chemical composition and typical process parameters)is fused with the local process information collected by multi-grained scanning,so that the next link’s input has both local and global features.Furthermore,in the multi-grained scanning structure,a sub sampling scheme with a variable window was designed,so that input data with different dimensions can get output characteristics of the same dimension after passing through the multi-grained scanning structure,allowing the cascade forest structure to be trained normally.Finally,actual production data of three steel grades was used to conduct the experimental evaluation.The results revealed that the gcForest-based mechanical property prediction model outperforms the competition in terms of comprehensive performance,ease of parameter adjustment,and ability to sustain high prediction accuracy with fewer samples.展开更多
A risk assessment based adaptive ultra-short-term wind power prediction(USTWPP)method is proposed in this paper.In this method,features are first extracted from the historical data,and then each wind power time series...A risk assessment based adaptive ultra-short-term wind power prediction(USTWPP)method is proposed in this paper.In this method,features are first extracted from the historical data,and then each wind power time series(WPTS)is split into several subsets defined by their stationary patterns.A WPTS that does not match any of the stationary patterns is then included in a subset of non-stationary patterns.Each WPTS subset is then related to a USTWPP model that is specially selected and optimized offline based on the proposed risk assessment index.For online applications,the pattern of the last short WPTS is first recognized,and the relevant prediction model is then applied for USTWPP.Experimental results confirm the efficacy of the proposed method.展开更多
文摘The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method.
基金financially supported by the National Natural Science Foundation of China(No.52004029)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-20-06).
文摘Higher requirements for the accuracy of relevant models are put throughout the transformation and upgrade of the iron and steel sector to intelligent production.It has been difficult to meet the needs of the field with the usual prediction model of mechanical properties of hotrolled strip.Insufficient data and difficult parameter adjustment limit deep learning models based on multi-layer networks in practical applications;besides,the limited discrete process parameters used make it impossible to effectively depict the actual strip processing process.In order to solve these problems,this research proposed a new sampling approach for mechanical characteristics input data of hot-rolled strip based on the multi-grained cascade forest(gcForest)framework.According to the characteristics of complex process flow and abnormal sensitivity of process path and parameters to product quality in the hot-rolled strip production,a three-dimensional continuous time series process data sampling method based on time-temperature-deformation was designed.The basic information of strip steel(chemical composition and typical process parameters)is fused with the local process information collected by multi-grained scanning,so that the next link’s input has both local and global features.Furthermore,in the multi-grained scanning structure,a sub sampling scheme with a variable window was designed,so that input data with different dimensions can get output characteristics of the same dimension after passing through the multi-grained scanning structure,allowing the cascade forest structure to be trained normally.Finally,actual production data of three steel grades was used to conduct the experimental evaluation.The results revealed that the gcForest-based mechanical property prediction model outperforms the competition in terms of comprehensive performance,ease of parameter adjustment,and ability to sustain high prediction accuracy with fewer samples.
基金supported in part by Special Fund of the National Basic Research Program of China(2013CB228204)NSFCNRCT Collaborative Project(No.51561145011)+1 种基金Australian Research Council Project(DP120101345)State Grid Corporation of China.
文摘A risk assessment based adaptive ultra-short-term wind power prediction(USTWPP)method is proposed in this paper.In this method,features are first extracted from the historical data,and then each wind power time series(WPTS)is split into several subsets defined by their stationary patterns.A WPTS that does not match any of the stationary patterns is then included in a subset of non-stationary patterns.Each WPTS subset is then related to a USTWPP model that is specially selected and optimized offline based on the proposed risk assessment index.For online applications,the pattern of the last short WPTS is first recognized,and the relevant prediction model is then applied for USTWPP.Experimental results confirm the efficacy of the proposed method.