期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fuzzy Logic Controlled Dual Active Bridge Series Resonant Converter for DC Smart Grid Application
1
作者 Thabit Salim Nassor Atsushi Yona Tomonobu Senjyu 《Journal of Energy and Power Engineering》 2015年第8期741-752,共12页
Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can ... Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards. 展开更多
关键词 DC smart grid dual active bridge series resonant converter wind turbine controllable loads photovoltaic.
下载PDF
Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak
2
作者 Guo XU Bo RAO +9 位作者 Yonghua DING Mao LI Da LI Ruo JIA Minxiong YAN Xinke JI Nengchao WANG Zhuo HUANG Daojing GUO Lai PENG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第8期96-103,共8页
To further research the response of the tearing mode(TM) to dynamic resonant magnetic perturbation(DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply(MSRIPS) with a function of discret... To further research the response of the tearing mode(TM) to dynamic resonant magnetic perturbation(DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply(MSRIPS) with a function of discrete variable frequency is designed for DRMP coils in this study. The MSRIPS is an AC–DC–AC converter, including a phase-controlled rectifier, an LC filter, an insulated gate bipolar transistor(IGBT) full bridge, a matching transformer, three resonant capacitors with different capacitance values, and three corresponding silicon controlled rectifier(SCR) switches. The function of discrete variable frequency is realized by switching over different resonant capacitors with corresponding SCR switches while matching the corresponding driving frequency of the IGBT full bridge. A detailed switching strategy of the SCR switch is put forward to obtain sinusoidal current waveform and realize current waveform smooth transition during frequency conversion. In addition, a resistor and thyristor bleeder is designed to protect the SCR switch from overvoltage. Manufacturing of the MSRIPS is completed, and the MSRIPS equipment can output current with an amplitude of 1.5 kA when its working frequency jumps among different frequencies. Moreover, the current waveform is sinusoidal and can smoothly transition during frequency conversion. Furthermore, the transition time when the current amplitude rises from zero to a steady state is less than 2 ms during frequency conversion. By using the MSRIPS, the expected discrete variable frequency DRMP is generated, and the phenomenon of the TM being locked to the discrete variable frequency DRMP is observed on the J-TEXT tokamak. 展开更多
关键词 tearing mode J-TEXT series resonant inverter discrete variable frequency silicon controlled rectifier
下载PDF
Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs
3
作者 童立青 刘克富 王永刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期34-40,共7页
For an all solid-state Marx modulator applied in dielectric barrier discharges(DBDs),hard switching results in a very low efficiency.In this paper,a series resonant soft switching circuit,which series an inductance ... For an all solid-state Marx modulator applied in dielectric barrier discharges(DBDs),hard switching results in a very low efficiency.In this paper,a series resonant soft switching circuit,which series an inductance with DBD capacitor,is proposed to reduce the power loss.The power loss of the all circuit status with hard switching was analyzed,and the maximum power loss occurred during discharging at the rising and falling edges.The power loss of the series resonant soft switching circuit was also presented.A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss.The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times. 展开更多
关键词 dielectric barrier discharges all solid-state Marx modulator series resonant power loss
下载PDF
Hybrid Modular Smart Transformer for Asymmetrically Bidirectional Power Flow Operation
4
作者 Kangan Wang Youngjong Ko +3 位作者 Rongwu Zhu Siyu Wu Weimin Wu Marco Liserre 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1384-1398,共15页
The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have ... The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have the capability to operate in both directions.However,the reverse power is less as compared to the forward power,thus the design of ST with the same capacity in both directions increases the hardware cost and decreases the system efficiency.This paper proposes a Hybrid-modular-ST(H-ST),composed of a mixed use of single active bridge-based series resonant converter and dual active bridge instead of complete use of uni-or bi-directional converter adopted in the conventional solid-state-transformer.Based on the proposed H-ST,the impacts of power imbalance among cascaded modules in reverse operation mode are analyzed and then an effective solution based on reactive power compensation combined with the characteristics of the proposed architecture is adopted.The simulation and experimental results clearly validate the effectiveness and feasibility of the theoretical analyses. 展开更多
关键词 Cascaded H-bridge dual-active bridge series resonant converter smart transformer(ST) three-stage architecture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部