The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industria...The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart agriculture.Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes.This paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks.The proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual energies.The protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base station.The performance of the proposed protocol is evaluated through the network simulator NS3.40.For different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network lifetime.For 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.展开更多
The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like t...The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.展开更多
A Wireless Sensor Network(WSN)is constructed with numerous sensors over geographical regions.The basic challenge experienced while designing WSN is in increasing the network lifetime and use of low energy.As sensor no...A Wireless Sensor Network(WSN)is constructed with numerous sensors over geographical regions.The basic challenge experienced while designing WSN is in increasing the network lifetime and use of low energy.As sensor nodes are resource constrained in nature,novel techniques are essential to improve lifetime of nodes in WSN.Nodes energy is considered as an important resource for sensor node which are battery powered based.In WSN,energy is consumed mainly while data is being transferred among nodes in the network.Several research works are carried out focusing on preserving energy of nodes in the network and made network to live longer.Moreover,this network is threatened by attacks like vampire attack where the network is loaded by fake traffic.Here,Dual Encoding Recurrent Neural network(DERNNet)is proposed for classifying the vampire nodes s node in the network.Moreover,the Grey Wolf Optimization(GWO)algorithm helps for transferring the data by determining best solutions to optimally select the aggregation points;thereby maximizing battery/lifetime of the network nodes.The proposed method is evaluated with three standard approaches namely Knowledge and Intrusion Detection based Secure Atom Search Routing(KIDSASR),Risk-aware Reputation-based Trust(RaRTrust)model and Activation Function-based Trusted Neighbor Selection(AF-TNS)in terms of various parameters.These existing methods may lead to wastage of energy due to vampire attack,which further reduce the lifetime and increase average energy consumed in the network.Hence,the proposed DERNNet method achieves 31.4%of routing overhead,23%of end-to-end delay,78.6%of energy efficiency,94.8%of throughput,28.2%of average latency,92.4%of packet delivery ratio,85.2%of network lifetime,and 94.3%of classification accuracy.展开更多
Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy ...Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets.展开更多
Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles th...Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.展开更多
In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad ho...In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.展开更多
Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use...Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing).展开更多
Wireless sensor networks are employed in several applications, including military, medical, environmental and household. In all these applications, energy usage is the determining factor in the performance of wireless...Wireless sensor networks are employed in several applications, including military, medical, environmental and household. In all these applications, energy usage is the determining factor in the performance of wireless sensor networks. Consequently, methods of data routing and transferring to the base station are very important because the sensor nodes run on battery power and the energy available for sensors is limited. In this paper we intend to propose a new protocol called Fair Efficient Location-based Gossiping (FELGossiping) to address the problems of Gossiping and its extensions. We show how our approach increases the network energy and as a result maximizes the network life time in comparison with its counterparts. In addition, we show that the energy is balanced (fairly) between nodes. Saving the nodes energy leads to an increase in the node life in the network, in comparison with the other protocols. Furthermore, the protocol reduces propagation delay and loss of packets.展开更多
Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions...Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.展开更多
This paper provides a deep evaluation of the energy consumption of routing protocols. The evaluation is done along with other metrics such as throughput and packet delivery ratio (PDR). We introduce two more metrics t...This paper provides a deep evaluation of the energy consumption of routing protocols. The evaluation is done along with other metrics such as throughput and packet delivery ratio (PDR). We introduce two more metrics to capture the efficiency of the energy consumption: e-throughput and e-PDR. Both are ratios in relation to the energy. We consider the three low layers of the stack. Three types of routing protocols are used: proactive, reactive, and hybrid. At the MAC and PHY layer, three radio types are considered: 802.11a/b/g. Finally, the number of nodes is varying in random topologies, with nodes being static or mobile. Simulations are conducted using NS3. The parameters of a real network interface card are used. From the results in mobile position scenarios, no protocol is outperforming the others;even if OLSR has the lowest energy consumption, most of the time. However, in constant position scenarios, AODV consumed a lower energy, apart from the scenarios using the 802.11a standard where HWMP energy consumption is the lowest. Regarding the energy efficiency, AODV protocols provided the best e-throughput and OLSR the best e-PDR in overall configurations. A framework for selecting energy-efficient routing protocol depending on network characteristics is proposed at the end.展开更多
This paper investigates the power control and routing problem in the communication process of an energy harvesting(EH)multi-hop cognitive radio network(CRN).The secondary user(SU)nodes(i.e.,source node and relay nodes...This paper investigates the power control and routing problem in the communication process of an energy harvesting(EH)multi-hop cognitive radio network(CRN).The secondary user(SU)nodes(i.e.,source node and relay nodes)harvest energy from the environment and use the energy exclusively for transmitting data.The SU nodes(i.e.,relay nodes)on the path,store and forward the received data to the destination node.We consider a real world scenario where the EH-SU node has only local causal knowledge,i.e.,at any time,each EH-SU node only has knowledge of its own EH process,channel state and currently received data.In order to study the power and routing issues,an optimization problem that maximizes path throughput considering quality of service(QoS)and available energy constraints is proposed.To solve this optimization problem,we propose a hybrid game theory routing and power control algorithm(HGRPC).The EH-SU nodes on the same path cooperate with each other,but EH-SU nodes on the different paths compete with each other.By selecting the best next hop node,we find the best strategy that can maximize throughput.In addition,we have established four steps to achieve routing,i.e.,route discovery,route selection,route reply,and route maintenance.Compared with the direct transmission,HGRPC has advantages in longer distances and higher hop counts.The algorithm generates more energy,reduces energy consumption and increases predictable residual energy.In particular,the time complexity of HGRPC is analyzed and its convergence is proved.In simulation experiments,the performance(i.e.,throughput and bit error rate(BER))of HGRPC is evaluated.Finally,experimental results show that HGRPC has higher throughput,longer network life,less latency,and lower energy consumption.展开更多
Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy...Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.展开更多
In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy availa...In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy available in the nodes and the re-ceived signal strength of the nodes to identify the best possible route to the destination. Reliability is achieved by selecting a number of intermediate nodes as waypoints and the route is divided into smaller segments by the waypoints. One distinct ad-vantage of this model is that when a node on the route moves out or fails, instead of discarding the whole original route, only the two waypoint nodes of the broken segment are used to find a new path. REPU outperforms traditional schemes by establishing an energy-efficient path and also takes care of efficient route maintenance. Simulation results show that this routing scheme achieves much higher performance than the classical routing protocols, even in the presence of high node density, and overcomes simul-taneous packet forwarding.展开更多
Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requireme...Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.展开更多
Wireless Sensor Network (WSN) is an independent device that comprises a discrete collection of Sensor Nodes (SN) to sense environmental positions,device monitoring, and collection of information. Due to limited energ...Wireless Sensor Network (WSN) is an independent device that comprises a discrete collection of Sensor Nodes (SN) to sense environmental positions,device monitoring, and collection of information. Due to limited energy resourcesavailable at SN, the primary issue is to present an energy-efficient framework andconserve the energy while constructing a route path along with each sensor node.However, many energy-efficient techniques focused drastically on energy harvesting and reduced energy consumption but failed to support energy-efficient routingwith minimal energy consumption in WSN. This paper presents an energy-efficientrouting system called Energy-aware Proportional Fairness Multi-user Routing(EPFMR) framework in WSN. EPFMR is deployed in the WSN environment usingthe instance time. The request time sent for the route discovery is the foremost stepdesigned in the EPFMR framework to reduce the energy consumption rate. Theproportional fairness routing in WSN selects the best route path for the packet flowbased on the relationship between the periods of requests between different SN.Route path discovered for packet flow also measure energy on multi-user route pathusing the Greedy Instance Fair Method (GIFM). The GIFM in EPFMR developsnode dependent energy-efficient localized route path, improving the throughput.The energy-aware framework maximizes the throughput rate and performs experimental evaluation on factors such as energy consumption rate during routing,Throughput, RST, node density and average energy per packet in WSN. The RouteSearching Time (RST) is reduced using the Boltzmann Distribution (BD), and as aresult, the energy is minimized on multi-user WSN. Finally, GIFM applies aninstance time difference-based route searching on WSN to attain an optimal energyminimization system. Experimental analysis shows that the EPFMR framework canreduce the RST by 23.47% and improve the throughput by 6.79% compared withthe state-of-the-art works.展开更多
The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs...The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).展开更多
Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of ...Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.展开更多
Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destinat...Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.展开更多
In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the s...In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the source node, but also nearer to the destination node with respect to its sender, An energ-aware routing protocol based on ET is proposed. It enables the energy consumption for each hop to be the least for the transmission. The simulation results show the routing protocol is effective in the performance of energy consumption comparing with some other routing protocols.展开更多
We propose a novel cluster based distributed routing algorithm in a generalized form for heterogeneous wireless sensor networks. Heterogeneity with respect to number/types of communication interfaces, their data rates...We propose a novel cluster based distributed routing algorithm in a generalized form for heterogeneous wireless sensor networks. Heterogeneity with respect to number/types of communication interfaces, their data rates and that with respect to energy dissipation model have been exploited for energy and throughput efficiency. The algorithm makes routing assignment optimized for throughput and energy and has a complexity of N/K*logN+k2logk approximately, where N is the number of nodes and k is the number of kcluster heads. Performance experiments confirm the effectiveness of throughput and energy optimizations. The importance of choosing an optimal cluster radius has been shown. The energy consumption in the network scales up well with respect to the network size.展开更多
基金This work was supported by the Basic Science Research Program through the NationalResearch Foundation ofKorea(NRF)funded by the Ministry of Education under Grant RS-2023-00237300 and Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Agriculture and Food Convergence Technologies Program for Research Manpower Development,funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(Project No.RS-2024-00397026).
文摘The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart agriculture.Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes.This paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks.The proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual energies.The protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base station.The performance of the proposed protocol is evaluated through the network simulator NS3.40.For different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network lifetime.For 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.
文摘The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.
文摘A Wireless Sensor Network(WSN)is constructed with numerous sensors over geographical regions.The basic challenge experienced while designing WSN is in increasing the network lifetime and use of low energy.As sensor nodes are resource constrained in nature,novel techniques are essential to improve lifetime of nodes in WSN.Nodes energy is considered as an important resource for sensor node which are battery powered based.In WSN,energy is consumed mainly while data is being transferred among nodes in the network.Several research works are carried out focusing on preserving energy of nodes in the network and made network to live longer.Moreover,this network is threatened by attacks like vampire attack where the network is loaded by fake traffic.Here,Dual Encoding Recurrent Neural network(DERNNet)is proposed for classifying the vampire nodes s node in the network.Moreover,the Grey Wolf Optimization(GWO)algorithm helps for transferring the data by determining best solutions to optimally select the aggregation points;thereby maximizing battery/lifetime of the network nodes.The proposed method is evaluated with three standard approaches namely Knowledge and Intrusion Detection based Secure Atom Search Routing(KIDSASR),Risk-aware Reputation-based Trust(RaRTrust)model and Activation Function-based Trusted Neighbor Selection(AF-TNS)in terms of various parameters.These existing methods may lead to wastage of energy due to vampire attack,which further reduce the lifetime and increase average energy consumed in the network.Hence,the proposed DERNNet method achieves 31.4%of routing overhead,23%of end-to-end delay,78.6%of energy efficiency,94.8%of throughput,28.2%of average latency,92.4%of packet delivery ratio,85.2%of network lifetime,and 94.3%of classification accuracy.
文摘Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets.
文摘Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.
基金This Paper is supported by the National Natural Science Foundation of China(Grants Nos.61761035,41761086,61461037,61661041).
文摘In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.
文摘Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing).
文摘Wireless sensor networks are employed in several applications, including military, medical, environmental and household. In all these applications, energy usage is the determining factor in the performance of wireless sensor networks. Consequently, methods of data routing and transferring to the base station are very important because the sensor nodes run on battery power and the energy available for sensors is limited. In this paper we intend to propose a new protocol called Fair Efficient Location-based Gossiping (FELGossiping) to address the problems of Gossiping and its extensions. We show how our approach increases the network energy and as a result maximizes the network life time in comparison with its counterparts. In addition, we show that the energy is balanced (fairly) between nodes. Saving the nodes energy leads to an increase in the node life in the network, in comparison with the other protocols. Furthermore, the protocol reduces propagation delay and loss of packets.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50904070)the Science and Technology Foundation of China University of Mining & Technology (Nos.2007A046 and 2008A042)the Joint Production and Research Innovation Project of Jiangsu Province (No.BY2009114)
文摘Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.
文摘This paper provides a deep evaluation of the energy consumption of routing protocols. The evaluation is done along with other metrics such as throughput and packet delivery ratio (PDR). We introduce two more metrics to capture the efficiency of the energy consumption: e-throughput and e-PDR. Both are ratios in relation to the energy. We consider the three low layers of the stack. Three types of routing protocols are used: proactive, reactive, and hybrid. At the MAC and PHY layer, three radio types are considered: 802.11a/b/g. Finally, the number of nodes is varying in random topologies, with nodes being static or mobile. Simulations are conducted using NS3. The parameters of a real network interface card are used. From the results in mobile position scenarios, no protocol is outperforming the others;even if OLSR has the lowest energy consumption, most of the time. However, in constant position scenarios, AODV consumed a lower energy, apart from the scenarios using the 802.11a standard where HWMP energy consumption is the lowest. Regarding the energy efficiency, AODV protocols provided the best e-throughput and OLSR the best e-PDR in overall configurations. A framework for selecting energy-efficient routing protocol depending on network characteristics is proposed at the end.
基金This work was partially supported by the National Natural Science Foundation of China(No.61771410,No.61876089)by the Postgraduate Innovation Fund Project by Southwest University of Science and Technology(No.19ycx0106)+2 种基金by the Artificial Intelligence Key Laboratory of Sichuan Province(No.2017RYY05,No.2018RYJ03)by the Zigong City Key Science and Technology Plan Project(2019YYJC16)by and by the Horizontal Project(No.HX2017134,No.HX2018264,Nos.E10203788,HX2019250).
文摘This paper investigates the power control and routing problem in the communication process of an energy harvesting(EH)multi-hop cognitive radio network(CRN).The secondary user(SU)nodes(i.e.,source node and relay nodes)harvest energy from the environment and use the energy exclusively for transmitting data.The SU nodes(i.e.,relay nodes)on the path,store and forward the received data to the destination node.We consider a real world scenario where the EH-SU node has only local causal knowledge,i.e.,at any time,each EH-SU node only has knowledge of its own EH process,channel state and currently received data.In order to study the power and routing issues,an optimization problem that maximizes path throughput considering quality of service(QoS)and available energy constraints is proposed.To solve this optimization problem,we propose a hybrid game theory routing and power control algorithm(HGRPC).The EH-SU nodes on the same path cooperate with each other,but EH-SU nodes on the different paths compete with each other.By selecting the best next hop node,we find the best strategy that can maximize throughput.In addition,we have established four steps to achieve routing,i.e.,route discovery,route selection,route reply,and route maintenance.Compared with the direct transmission,HGRPC has advantages in longer distances and higher hop counts.The algorithm generates more energy,reduces energy consumption and increases predictable residual energy.In particular,the time complexity of HGRPC is analyzed and its convergence is proved.In simulation experiments,the performance(i.e.,throughput and bit error rate(BER))of HGRPC is evaluated.Finally,experimental results show that HGRPC has higher throughput,longer network life,less latency,and lower energy consumption.
基金Supported by the National Natural Science Foundation of China(No.61379057,61073186,61309001,61379110,61103202)Doctoral Fund of Ministry of Education of China(No.20120162130008)the National Basic Research Program of China(973 Program)(No.2014CB046305)
文摘Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.
文摘In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy available in the nodes and the re-ceived signal strength of the nodes to identify the best possible route to the destination. Reliability is achieved by selecting a number of intermediate nodes as waypoints and the route is divided into smaller segments by the waypoints. One distinct ad-vantage of this model is that when a node on the route moves out or fails, instead of discarding the whole original route, only the two waypoint nodes of the broken segment are used to find a new path. REPU outperforms traditional schemes by establishing an energy-efficient path and also takes care of efficient route maintenance. Simulation results show that this routing scheme achieves much higher performance than the classical routing protocols, even in the presence of high node density, and overcomes simul-taneous packet forwarding.
文摘Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.
文摘Wireless Sensor Network (WSN) is an independent device that comprises a discrete collection of Sensor Nodes (SN) to sense environmental positions,device monitoring, and collection of information. Due to limited energy resourcesavailable at SN, the primary issue is to present an energy-efficient framework andconserve the energy while constructing a route path along with each sensor node.However, many energy-efficient techniques focused drastically on energy harvesting and reduced energy consumption but failed to support energy-efficient routingwith minimal energy consumption in WSN. This paper presents an energy-efficientrouting system called Energy-aware Proportional Fairness Multi-user Routing(EPFMR) framework in WSN. EPFMR is deployed in the WSN environment usingthe instance time. The request time sent for the route discovery is the foremost stepdesigned in the EPFMR framework to reduce the energy consumption rate. Theproportional fairness routing in WSN selects the best route path for the packet flowbased on the relationship between the periods of requests between different SN.Route path discovered for packet flow also measure energy on multi-user route pathusing the Greedy Instance Fair Method (GIFM). The GIFM in EPFMR developsnode dependent energy-efficient localized route path, improving the throughput.The energy-aware framework maximizes the throughput rate and performs experimental evaluation on factors such as energy consumption rate during routing,Throughput, RST, node density and average energy per packet in WSN. The RouteSearching Time (RST) is reduced using the Boltzmann Distribution (BD), and as aresult, the energy is minimized on multi-user WSN. Finally, GIFM applies aninstance time difference-based route searching on WSN to attain an optimal energyminimization system. Experimental analysis shows that the EPFMR framework canreduce the RST by 23.47% and improve the throughput by 6.79% compared withthe state-of-the-art works.
文摘The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).
文摘Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.
文摘Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.
基金Supported by the National Natural Science Foun-dation of China (60572049) the Natural Science Foundation ofHubei Province of China (2005ABA264)
文摘In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the source node, but also nearer to the destination node with respect to its sender, An energ-aware routing protocol based on ET is proposed. It enables the energy consumption for each hop to be the least for the transmission. The simulation results show the routing protocol is effective in the performance of energy consumption comparing with some other routing protocols.
文摘We propose a novel cluster based distributed routing algorithm in a generalized form for heterogeneous wireless sensor networks. Heterogeneity with respect to number/types of communication interfaces, their data rates and that with respect to energy dissipation model have been exploited for energy and throughput efficiency. The algorithm makes routing assignment optimized for throughput and energy and has a complexity of N/K*logN+k2logk approximately, where N is the number of nodes and k is the number of kcluster heads. Performance experiments confirm the effectiveness of throughput and energy optimizations. The importance of choosing an optimal cluster radius has been shown. The energy consumption in the network scales up well with respect to the network size.