Trailing edge serrations(TESs)are capable of noticeably suppressing the turbulent trailing edge noise induced by rotating wind turbine blades and become an integral part of a blade.However,the challenges involved in t...Trailing edge serrations(TESs)are capable of noticeably suppressing the turbulent trailing edge noise induced by rotating wind turbine blades and become an integral part of a blade.However,the challenges involved in the dimensional design of serration height 2 h,wavelengthλand flap angleϕare yet to be dealt with in a satisfactory manner.To address the problem,a general model for simulating the effects of serrations on the hydrodynamic and aeroacoustic performance is proposed due to its ease of use and relatively low requirements for user input.The solid serrations are replicated by momentum sources calculated by its aerodynamic forces.Then,a case relevant to wind turbine airfoil is examined,a hybrid improved delay detached eddy simulation(IDDES)method coupled with FW-H integration is deployed to obtain the flow features and far-field sound pressure level.It is found that the modeling method could reproduce the flow field and noise as serrated airfoil.展开更多
This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due ...This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due to the inclusion of a serrated trailing edge designed to reduce noise, a 10 k W wind turbine rotor was equipped with a thin serrated trailing edge. The restrictive condition for the serrated trailing edge equipped with the using of a 2D airfoil was examined through the using of a wind tunnel experiment after studying existing restrictive condition and analyzing prior research on serrated trailing edges. The aerodynamic performance and noise reduction effect of a small-scale model were investigated with the using of a serrated trailing edge. Moreover, the noise levels from the experiment were considered that the noise prediction method could be used for a full-scale rotor. It is confirmed that noise reduction effect is compared with wind tunnel test data at the 2D airfoil and model rotor condition.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51736008)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21050303).
文摘Trailing edge serrations(TESs)are capable of noticeably suppressing the turbulent trailing edge noise induced by rotating wind turbine blades and become an integral part of a blade.However,the challenges involved in the dimensional design of serration height 2 h,wavelengthλand flap angleϕare yet to be dealt with in a satisfactory manner.To address the problem,a general model for simulating the effects of serrations on the hydrodynamic and aeroacoustic performance is proposed due to its ease of use and relatively low requirements for user input.The solid serrations are replicated by momentum sources calculated by its aerodynamic forces.Then,a case relevant to wind turbine airfoil is examined,a hybrid improved delay detached eddy simulation(IDDES)method coupled with FW-H integration is deployed to obtain the flow features and far-field sound pressure level.It is found that the modeling method could reproduce the flow field and noise as serrated airfoil.
基金supported by the Research Fund of 2014 Chungnam National University of the Korea
文摘This paper discussed a noise reduction effect of airfoil and small-scale model rotor by using attached serration trailing edge in the wind tunnel test condition. In order to analyze the changes in the performance due to the inclusion of a serrated trailing edge designed to reduce noise, a 10 k W wind turbine rotor was equipped with a thin serrated trailing edge. The restrictive condition for the serrated trailing edge equipped with the using of a 2D airfoil was examined through the using of a wind tunnel experiment after studying existing restrictive condition and analyzing prior research on serrated trailing edges. The aerodynamic performance and noise reduction effect of a small-scale model were investigated with the using of a serrated trailing edge. Moreover, the noise levels from the experiment were considered that the noise prediction method could be used for a full-scale rotor. It is confirmed that noise reduction effect is compared with wind tunnel test data at the 2D airfoil and model rotor condition.