The past years have witnessed a rapid development of DNA nanotechnology in nanomaterials science with a central focus on programmable material construction on the nanoscale. An efficient method is therefore highly des...The past years have witnessed a rapid development of DNA nanotechnology in nanomaterials science with a central focus on programmable material construction on the nanoscale. An efficient method is therefore highly desirable(but challenging) for analytical/preparative purification of DNA-conjugated nano-objects and their DNA-assemblies. In this regard, agarose gel electrophoresis, a traditional technique that has been invented for biomacromolecule separation, has found many innovative uses.This includes shape, size, charge, and ligand-valence separations of nanoparticle building blocks as well as monitoring a self-assembly process towards product identification and purification.展开更多
基金supported by NNSFC(Nos.21273214,21425521,21521001)Hefei Center for Physical Science and Technology(No2014FXCX010)Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘The past years have witnessed a rapid development of DNA nanotechnology in nanomaterials science with a central focus on programmable material construction on the nanoscale. An efficient method is therefore highly desirable(but challenging) for analytical/preparative purification of DNA-conjugated nano-objects and their DNA-assemblies. In this regard, agarose gel electrophoresis, a traditional technique that has been invented for biomacromolecule separation, has found many innovative uses.This includes shape, size, charge, and ligand-valence separations of nanoparticle building blocks as well as monitoring a self-assembly process towards product identification and purification.