In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ...In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.展开更多
The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathema...The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathematical model which is capable of expressing both its dynamics and steady-state characteristics. A neural network-based adaptive control strategy is proposed in this paper. In this method, two neural networks have been adopted for system identification (NNI) and control (NNC), respectively. Then, the commonly-used specialized learning has been modified, by taking the NNI output as the approximation output of the servo-motor during the weights training to get sensitivity information. Moreover, the rule for choosing the learning rate is given on the basis of the analysis of Lyapunov stability. Finally, an example of applying the proposed control strategy on a servo-motor is presented to show its effectiveness.展开更多
Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accur...Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accuracy and output torque smoothness of the CMG depends more on its gimbal servo system.Considering the constraints of size,mass and power consumption for a small satellite,here,a mini-CMG is designed,in which the gimbal servo system is driven by an ultrasonic motor.The good performances of the CMG are obtained by both the ultrasonic motor and the rotary inductosyn.The direct drive of gimbal improves its dynamic performance,with the output bandwidth above 20 Hz.The angular and speed closed-loop control obtains the 0.02°/s gimbal rate,and the output torque resolution better than 2×10^(-3) N·m.The ultrasonic motor provides 1.0N·m self-lock torque during power-off,with 12arc-second position accuracy.展开更多
Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage me...Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage mechanism has been designed and manufactured. Whole control system of the new BHF technique was developed, and the basic structure of the hardware configuration of the system was given. Software analysis, implementation and division of the functional modules have been done. Also, the control software in data acquisition and processing module has been developed in the relevant technology of the BHF control system for the requirements of real-time, stability and accuracy. By the new BHF device combined with the hardware and the software system, the BHF can be regulated accurately variation with the predefined BHF profile in deep drawing process.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including er...This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including error and error derivation in operation point. Obtained fuzzy control law has been employed to control angular position of servo using digital control technique applied to a typical microcontroller like AVR. The performance and robustness of modified fuzzy controller in comparison with PID controller evaluated in no load, applied external disturbance with different magnitude conditions has been studied. The simulation results showed that the proposed fuzzy controller has a considerable advantage in rise time, settling time and overshoot respect to PID controller when the servo system encounters with nonlinear features like saturation and friction.展开更多
Fiber winding tension is an important factor in the molding techniques of composite material which influences the quality of winding product directly, and the tension control is a key technique in fiber winding techni...Fiber winding tension is an important factor in the molding techniques of composite material which influences the quality of winding product directly, and the tension control is a key technique in fiber winding techniques. This paper introduces a closed-loop tension control system with the programmable logic controller (PLC) with function modules as its control kernel, the alternating current (AC) servo motor as execute element and the radius-following device to accomplish the real-time radius compensation. The mechanism of the tension control system is analyzed and the numerical model is set up. The compensation technique of the radius of the scroll is analyzed. Experimental results show that the system is well qualified with high control precision and high reaction speed.展开更多
The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In o...The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.展开更多
基金supported by the Postdoctoral Project of Heilongjiang Province
文摘In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.
基金National Science Foundation of China (No.60572055)Advanced Research Grant of Shanghai Normal University (No.DYL200809)Guangxi Science Foundation (No.0339068).
文摘The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathematical model which is capable of expressing both its dynamics and steady-state characteristics. A neural network-based adaptive control strategy is proposed in this paper. In this method, two neural networks have been adopted for system identification (NNI) and control (NNC), respectively. Then, the commonly-used specialized learning has been modified, by taking the NNI output as the approximation output of the servo-motor during the weights training to get sensitivity information. Moreover, the rule for choosing the learning rate is given on the basis of the analysis of Lyapunov stability. Finally, an example of applying the proposed control strategy on a servo-motor is presented to show its effectiveness.
基金supported by the National Natural Science Foundation of China(No.51575260)the Fundamental Research Funds for the Central Universities(No.NJ20160001)
文摘Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accuracy and output torque smoothness of the CMG depends more on its gimbal servo system.Considering the constraints of size,mass and power consumption for a small satellite,here,a mini-CMG is designed,in which the gimbal servo system is driven by an ultrasonic motor.The good performances of the CMG are obtained by both the ultrasonic motor and the rotary inductosyn.The direct drive of gimbal improves its dynamic performance,with the output bandwidth above 20 Hz.The angular and speed closed-loop control obtains the 0.02°/s gimbal rate,and the output torque resolution better than 2×10^(-3) N·m.The ultrasonic motor provides 1.0N·m self-lock torque during power-off,with 12arc-second position accuracy.
文摘Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage mechanism has been designed and manufactured. Whole control system of the new BHF technique was developed, and the basic structure of the hardware configuration of the system was given. Software analysis, implementation and division of the functional modules have been done. Also, the control software in data acquisition and processing module has been developed in the relevant technology of the BHF control system for the requirements of real-time, stability and accuracy. By the new BHF device combined with the hardware and the software system, the BHF can be regulated accurately variation with the predefined BHF profile in deep drawing process.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
文摘This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including error and error derivation in operation point. Obtained fuzzy control law has been employed to control angular position of servo using digital control technique applied to a typical microcontroller like AVR. The performance and robustness of modified fuzzy controller in comparison with PID controller evaluated in no load, applied external disturbance with different magnitude conditions has been studied. The simulation results showed that the proposed fuzzy controller has a considerable advantage in rise time, settling time and overshoot respect to PID controller when the servo system encounters with nonlinear features like saturation and friction.
基金National Natural Science Foundation of China (50175020)
文摘Fiber winding tension is an important factor in the molding techniques of composite material which influences the quality of winding product directly, and the tension control is a key technique in fiber winding techniques. This paper introduces a closed-loop tension control system with the programmable logic controller (PLC) with function modules as its control kernel, the alternating current (AC) servo motor as execute element and the radius-following device to accomplish the real-time radius compensation. The mechanism of the tension control system is analyzed and the numerical model is set up. The compensation technique of the radius of the scroll is analyzed. Experimental results show that the system is well qualified with high control precision and high reaction speed.
基金Supported by National Natural Science Foundation of China(Grant No.51335009)Major National Science and Technology Project of China(Grant No.2011ZX04001-011)
文摘The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.