Under the direction of design space theory,in this paper we discuss the design of a superscalar pipelining using the way of multiple issues,and the implement of a superscalar based RISC DSP architecture,SDSP.Furthermo...Under the direction of design space theory,in this paper we discuss the design of a superscalar pipelining using the way of multiple issues,and the implement of a superscalar based RISC DSP architecture,SDSP.Furthermore,in this paper we discuss the validity of instruction prefetch,the branch prediction,the depth of instruction window and other issues that can affect the performance of superscalar DSP.展开更多
A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gatin...A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gating circuit in high speed circuit, a distributed and early clock gating method was developed on its instruction fetch & decoder unit, its pipelined data-path unit and its super-Harvard memory interface unit. The core was implemented following the Synopsys back-end flow under TSMC (Taiwan Silicon manufacture corporation) 0.18-μm 1.8-V 1P6M process, with a core size of 2 mm×2 mm. Result shows that it can run under 200 MHz with a power performance around 0.3 mW/MIPS. Meanwhile, only 39.7% circuit is active simultaneously in average, compared to its non-gating counterparts.展开更多
A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very la...A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very large scale integration (VLSI), especially in digital signal processors (DSP). If test patterns from accumulators for the modules are encoded in the pseudo Gray code presentation, the switching activities of the modules are reduced, and the decrease of the test power consumption is resulted in. Results of experimentation based on FPGA show that the test approach can reduce dynamic power consumption by an average of 17.40% for 8-bit ripple carry adder consisting of 3-2 counters. Then implementation of the low power test in hardware is exploited. Because of the reuse of adders, introduction of additional XOR logic gates is avoided successfully. The design minimizes additional hardware overhead for test and needs no adjustment of circuit structure. The low power test can detect any combinational stuck-at fault within the basic building block without any degradation of original circuit performance.展开更多
文摘Under the direction of design space theory,in this paper we discuss the design of a superscalar pipelining using the way of multiple issues,and the implement of a superscalar based RISC DSP architecture,SDSP.Furthermore,in this paper we discuss the validity of instruction prefetch,the branch prediction,the depth of instruction window and other issues that can affect the performance of superscalar DSP.
基金The Research Project of China Military Department (No6130325)
文摘A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gating circuit in high speed circuit, a distributed and early clock gating method was developed on its instruction fetch & decoder unit, its pipelined data-path unit and its super-Harvard memory interface unit. The core was implemented following the Synopsys back-end flow under TSMC (Taiwan Silicon manufacture corporation) 0.18-μm 1.8-V 1P6M process, with a core size of 2 mm×2 mm. Result shows that it can run under 200 MHz with a power performance around 0.3 mW/MIPS. Meanwhile, only 39.7% circuit is active simultaneously in average, compared to its non-gating counterparts.
基金supported by the National Natural Science Foundation of China under Grant No.90407007University Science Foundation of China under Grant No R0820207
文摘A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very large scale integration (VLSI), especially in digital signal processors (DSP). If test patterns from accumulators for the modules are encoded in the pseudo Gray code presentation, the switching activities of the modules are reduced, and the decrease of the test power consumption is resulted in. Results of experimentation based on FPGA show that the test approach can reduce dynamic power consumption by an average of 17.40% for 8-bit ripple carry adder consisting of 3-2 counters. Then implementation of the low power test in hardware is exploited. Because of the reuse of adders, introduction of additional XOR logic gates is avoided successfully. The design minimizes additional hardware overhead for test and needs no adjustment of circuit structure. The low power test can detect any combinational stuck-at fault within the basic building block without any degradation of original circuit performance.