As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long...As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long,which is not conducive to the design and development of new products. In this paper,the normal wear depth of the BSM nut raceway is calculated under the variable speed operation condition using the fractal wear analysis method and the BSM’s accelerated degradation proportional wear model. Parameters of the acceleration degradation model of the double-nut preloaded ball screw pair are calculated based on the physical simulation results. The accelerated degradation test platform of the BSM is designed and manufactured to calculate the raceway wear model when the lubrication condition is broken under the variable-speed inertial load and the boundary lubrication condition under the uniform speed state. Three load forces and two samples are selected for the accelerated degradation test of the BSM. The measured friction torque of the BSM is employed as the evaluation index of the accuracy degradation test. In addition,the life cycle of the accuracy retention is accurately calculated by employing the parameters of the physical simulation model of the BSM. The calculations mentioned above can be used to estimate BSM’s accuracy performance degradation law under normal operating conditions. The application of the proposed model provides a new research method for researching the precision retention of the BSM.展开更多
The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed,high accuracy,high flexibility,high productivity,low noise,cleaning and en...The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed,high accuracy,high flexibility,high productivity,low noise,cleaning and energy saving.To effectively improve the performance and lower the cost,it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices.A new patented main driving mechanism and a new optimal design method are proposed.In the optimal design,the performance indices,i.e.,the local motion/force transmission indices ITI,OTI,good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined.The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis.Thereafter,the performance atlases,which can present all possible design solutions,are depicted.As a result,the feasible solution of the mechanism with good motion/force transmission performance is obtained.And the solution can be flexibly adjusted by designer according to the practical design requirements.The proposed mechanism is original,and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.展开更多
Coupling is the significant characteristic of parallel mechanism,while it is just the coupling that brings about much difficulty for the configuration design,theoretical analysis and the development of the control sys...Coupling is the significant characteristic of parallel mechanism,while it is just the coupling that brings about much difficulty for the configuration design,theoretical analysis and the development of the control system of the parallel mechanism. And recently,the research on the decoupled parallel mechanism becomes one of the research hot points in the mechanism fields. In this paper,a type synthesis method for the translational decoupled parallel mechanism( TDPM) is proposed based on the screw theory. To achieve the decoupling characteristics of the translational parallel mechanism,the translational decoupled criterion for type synthesis of the branches are presented in this paper. According to this criterion and the realization conditions of rotational degree of freedom of the mechanism proposed former,a large number of branches for the TDPM are obtained. Taking the three degrees of freedom( DOFs) TDPM as an example,the process of type synthesis is discussed in detail. Using this proposed type synthesis method,a serial of translational decoupled parallel mechanisms, including but not limited to all the existing typical 3-DOF TDPMs, are obtained, which identifies the correctness and effective of the method. The contents of this paper provide a reference and possess significant theoretical meanings for the synthesis and development of the novel decoupled parallel mechanisms.展开更多
Structural synthesis for 4-DOF parallel manipulators using screw theory issystematically studied. Motion properties and constraint conditions of 4-DOF parallel manipulatorsaccording to the relationship between screw a...Structural synthesis for 4-DOF parallel manipulators using screw theory issystematically studied. Motion properties and constraint conditions of 4-DOF parallel manipulatorsaccording to the relationship between screw and reciprocal screw are analyzed. Mathematicalexpressions for constraint screws and twist screws of moving platform are constructed, and allpossible limbs, which provide one or more force constraints, are enumerated. Finally, a parallelmanipulator with 3-rotation-DOF and 1-translation-DOF is used as an example to describe thesynthesis procedure for symmetrical and non-symmetrical 4-DOF parallel manipulators.展开更多
As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general par...As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.展开更多
In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units an...In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.展开更多
To study the effect of the contact angle and helix angle on slide-roll ratio at the ball contact points under the accelerated motion state of ball screw mechanisrm(B S M),the curve theory in differential geometry a d ...To study the effect of the contact angle and helix angle on slide-roll ratio at the ball contact points under the accelerated motion state of ball screw mechanisrm(B S M),the curve theory in differential geometry a d the homogeneous transformation matrix ae used to establish the acceleration kinematics model of BSM.The model can be used to describe the accelerated motion relationships among the screw,balls and nut,calculate the acceleration of relative motion at the contact points between the balls and raceways,and analyze five accelerated motion rules between the balls and raceways.It also conducts a simulation analysis of the slide-roll ratio relationship between the accelerations at the ball center and the contact point of ball under different contact angles and helix angles.As shownby the analysis,with the increase in the BSM’s contact angle,the slide-roll ratio at the contact points decreases,and the contact angle has a relatively significant effect on the slide-roll ratio.However,with the decrease in the BSM’helix angle,the slide-roll ratio at the contact points decreases,and the helix angle has a relatively insignificant effect on the slide-roll ratio.By measuring the accelerations of both the screw and nut under the accelerated motion state,it also verifies the existence of the slide-roll mixed motion at the ball contact point A between the ball and the screw racewayand pure rolling at the ball contact point B between the ball and the nut raceway during the accelerated motion.展开更多
In order to analyze the kinematic performances of elliptic-gear & eccentric slider-crank & uniform-pitch screw weft-insertion mechanism proposed by us,kinematic mathematic models of the mechanism were establis...In order to analyze the kinematic performances of elliptic-gear & eccentric slider-crank & uniform-pitch screw weft-insertion mechanism proposed by us,kinematic mathematic models of the mechanism were established,and an aided analytic software was compiled.Influences of some important parameters on the kinematic characteristics of the mechanism were analyzed.A group of preferable parameters were obtained according to the software and some requirements.Comparisons of kinematic performances were made between the proposed mechanism and the variable-pitch screw insertion mechanism of C401 rapier loom manufactured by Vamatex Corp in Italy.The results show that the proposed mechanism can meet the requirements of inserting wefts.展开更多
Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,acco...Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.展开更多
The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent characteristics.However,little work has been devoted to the actuator selection and placement that best ...The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent characteristics.However,little work has been devoted to the actuator selection and placement that best satisfy the system's functional requirements during concept design.In this study,a unified approach for synthesizing the actuation spaces of both rigid and flexure parallel mechanisms has been presented,and all possible combinations of inputs could be obtained,laying a theoretical foundation for the subsequent optimization of inputs.According to the linear independence of actuation space and constraint space of the lower-mobility parallel mechanism,a general expression of actuation spaces in the format of screw systems is deduced,a unified synthesis process for the lower-mobility parallel mechanism is derived,and the efficiency of the method is validated with two selective examples based on screw theory.This study presents a theoretical framework for the input selection problems of parallel mechanisms,aiming to help designers select and place actuators in a correct and even optimal way after the configuration design.展开更多
The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless a...The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.展开更多
The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss consider...The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period.展开更多
By rigidizing the input joints, all possible combinations of drive selecting for the 4-PPPS parallel mechanism are analyzed based on the screw theory in this paper, and the five of them are proved to be reasonable. Th...By rigidizing the input joints, all possible combinations of drive selecting for the 4-PPPS parallel mechanism are analyzed based on the screw theory in this paper, and the five of them are proved to be reasonable. Then choosing the one as mechanical actuators, the workspace of the 4-PPPS parallel mechanism is deduced according to the rational input scheme. Finally the rationality of input scheme for this mechanism is identified on the basis of the continuity of the workspace.展开更多
Ball screw mechanism(BSM)is an important force-motion transfer device which is used in high-precision machine tools such as the computer numerical control.Performance parameters such as contact angle,helix angle,and t...Ball screw mechanism(BSM)is an important force-motion transfer device which is used in high-precision machine tools such as the computer numerical control.Performance parameters such as contact angle,helix angle,and the pitch radius of the screw can greatly affect the transmission precision,and the transmission precision of the BSM are not yet well resolved.In this study,ball contact point motion model is derived to assess the influence of contact angle,helix angle,and the pitch radius of the screw on transmission precision under uniform motion of the BSM.For the purpose of verifying the kinematic characteristics of the contact points between the balls and raceways under a state of uniform motion,a kinematic model is developed and values are computed for a set of boundary conditions.Comparing the simulated data to measured data,the laws of motion for the ball contact points developed in this study are confirmed.Moreover,the effect of the screw velocity on contact angle,helix angle and the pitch radius of the screw directly affects the velocity of the nut.Under the accelerated and uniform motion state of the screw,larger angular velocity of the screw results in an increase in the displacement deviation of the nut,and these parameters of the nut are considered to improve the transmission precision of the BSM.The verification of the research results provides a new research method for the study of the precision retention of ball screw mechanism.展开更多
This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the ...This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the servo mechanism,and analyzes the mechanism of the servo device's implementation of the"positioning"func-tion on the control device.Intended to guide the continuous adjustment process in controlling the function/accuracy of actuator equipment and application debugging,ensuring the safe and stable operation of production equipment and facilities.展开更多
Based on the analysis of the differential cushion damping system kinematic relation and using principle of virtual work, a new kinematic function expression is established which is between six ball-screws and cushion ...Based on the analysis of the differential cushion damping system kinematic relation and using principle of virtual work, a new kinematic function expression is established which is between six ball-screws and cushion components. At last the relationship between ball-screw force and attitude is intreduced.展开更多
The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and recip...The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.展开更多
The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some limitations, such as comple...The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some limitations, such as complex workspace, high nonlinear relationship between input and output, difficulties in static and dynamic analysis, and the development of control system, which restricts its application fields. The decoupled parallel mechanism is currently one of the research focuses of the mechanism fields, while the study on the different characteristics between the deeoupled and coupled parallel mechanisms has not been reported. Therefore, this paper performs the systematic comparative analysis of the 3-RPUR and the 3-CPR parallel mechanisms. The features of the two mechanisms are described and their movement forms are analyzed with screw theory. The inverse and forward displacement solutions are solved and the Jacobian matrices are obtained. According to the Jacobian matrices and by using the theory of physical model of the solution space, the workspace, dexterity, velocity, payload capability, and stiffness of the mechanisms are analyzed with plotting the indices atlases. The research results prove that the effects of the coupling on the parallel mechanism are double-side, and then the adoption of the decoupled parallel mechanism should be determined by the requirements of the concrete application situation. The contents of this paper should be useful for the type synthesis and practical application of the parallel mechanism.展开更多
It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel ...It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.展开更多
基金Supported by the National Natural Science Foundation of China(No.51575014,51505020)the Key Foundation Project of China Academy of Railway Sciences(No.2021YJ200).
文摘As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long,which is not conducive to the design and development of new products. In this paper,the normal wear depth of the BSM nut raceway is calculated under the variable speed operation condition using the fractal wear analysis method and the BSM’s accelerated degradation proportional wear model. Parameters of the acceleration degradation model of the double-nut preloaded ball screw pair are calculated based on the physical simulation results. The accelerated degradation test platform of the BSM is designed and manufactured to calculate the raceway wear model when the lubrication condition is broken under the variable-speed inertial load and the boundary lubrication condition under the uniform speed state. Three load forces and two samples are selected for the accelerated degradation test of the BSM. The measured friction torque of the BSM is employed as the evaluation index of the accuracy degradation test. In addition,the life cycle of the accuracy retention is accurately calculated by employing the parameters of the physical simulation model of the BSM. The calculations mentioned above can be used to estimate BSM’s accuracy performance degradation law under normal operating conditions. The application of the proposed model provides a new research method for researching the precision retention of the BSM.
基金supported by National Natural Science Foundation of China(Grant No.51021064)National Key Scientific and Technological Program of China(Grant No.2010ZX04004-116)
文摘The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed,high accuracy,high flexibility,high productivity,low noise,cleaning and energy saving.To effectively improve the performance and lower the cost,it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices.A new patented main driving mechanism and a new optimal design method are proposed.In the optimal design,the performance indices,i.e.,the local motion/force transmission indices ITI,OTI,good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined.The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis.Thereafter,the performance atlases,which can present all possible design solutions,are depicted.As a result,the feasible solution of the mechanism with good motion/force transmission performance is obtained.And the solution can be flexibly adjusted by designer according to the practical design requirements.The proposed mechanism is original,and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51005195,51205339)
文摘Coupling is the significant characteristic of parallel mechanism,while it is just the coupling that brings about much difficulty for the configuration design,theoretical analysis and the development of the control system of the parallel mechanism. And recently,the research on the decoupled parallel mechanism becomes one of the research hot points in the mechanism fields. In this paper,a type synthesis method for the translational decoupled parallel mechanism( TDPM) is proposed based on the screw theory. To achieve the decoupling characteristics of the translational parallel mechanism,the translational decoupled criterion for type synthesis of the branches are presented in this paper. According to this criterion and the realization conditions of rotational degree of freedom of the mechanism proposed former,a large number of branches for the TDPM are obtained. Taking the three degrees of freedom( DOFs) TDPM as an example,the process of type synthesis is discussed in detail. Using this proposed type synthesis method,a serial of translational decoupled parallel mechanisms, including but not limited to all the existing typical 3-DOF TDPMs, are obtained, which identifies the correctness and effective of the method. The contents of this paper provide a reference and possess significant theoretical meanings for the synthesis and development of the novel decoupled parallel mechanisms.
文摘Structural synthesis for 4-DOF parallel manipulators using screw theory issystematically studied. Motion properties and constraint conditions of 4-DOF parallel manipulatorsaccording to the relationship between screw and reciprocal screw are analyzed. Mathematicalexpressions for constraint screws and twist screws of moving platform are constructed, and allpossible limbs, which provide one or more force constraints, are enumerated. Finally, a parallelmanipulator with 3-rotation-DOF and 1-translation-DOF is used as an example to describe thesynthesis procedure for symmetrical and non-symmetrical 4-DOF parallel manipulators.
基金supported by the National Natural Science Foundation of China(Grant Nos.52105035 and 52075467)the Natural Science Foundation of Hebei Province of China(Grant No.E2021203109)+1 种基金the State Key Laboratory of Robotics and Systems(HIT)(Grant No.SKLRS-2021-KF-15)the Industrial Robot Control and Reliability Technology Innovation Center of Hebei Province(Grant No.JXKF2105).
文摘As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.
基金Supported by National Natural Science Foundation of China(Grant No.52275032)Key Project of Hebei Provincial Natural Science Foundation of China(Grant No.E2022203077)Hebei Provincial Key Research and Development Plan of China(Grant No.202230808010057).
文摘In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
基金The National Natural Science Foundation of China(No.51575014,51505012)the Natural Science Foundation of Beijing(No.KZ201410005010)+1 种基金China Postdoctoral Science Foundation(No.2016M591033)Beijing Postdoctoral Research Foundation(No.2015ZZ-13)
文摘To study the effect of the contact angle and helix angle on slide-roll ratio at the ball contact points under the accelerated motion state of ball screw mechanisrm(B S M),the curve theory in differential geometry a d the homogeneous transformation matrix ae used to establish the acceleration kinematics model of BSM.The model can be used to describe the accelerated motion relationships among the screw,balls and nut,calculate the acceleration of relative motion at the contact points between the balls and raceways,and analyze five accelerated motion rules between the balls and raceways.It also conducts a simulation analysis of the slide-roll ratio relationship between the accelerations at the ball center and the contact point of ball under different contact angles and helix angles.As shownby the analysis,with the increase in the BSM’s contact angle,the slide-roll ratio at the contact points decreases,and the contact angle has a relatively significant effect on the slide-roll ratio.However,with the decrease in the BSM’helix angle,the slide-roll ratio at the contact points decreases,and the helix angle has a relatively insignificant effect on the slide-roll ratio.By measuring the accelerations of both the screw and nut under the accelerated motion state,it also verifies the existence of the slide-roll mixed motion at the ball contact point A between the ball and the screw racewayand pure rolling at the ball contact point B between the ball and the nut raceway during the accelerated motion.
基金National Natural Science Foundation of China(No.50875243)Zhejiang Technique Innovation Group of Modern Textile Machinery,China(No.2009R50018)Foundation of New Textile Research & Development Emphasised Laboratory of Zhejiang Province,China(No.2009FZD004)
文摘In order to analyze the kinematic performances of elliptic-gear & eccentric slider-crank & uniform-pitch screw weft-insertion mechanism proposed by us,kinematic mathematic models of the mechanism were established,and an aided analytic software was compiled.Influences of some important parameters on the kinematic characteristics of the mechanism were analyzed.A group of preferable parameters were obtained according to the software and some requirements.Comparisons of kinematic performances were made between the proposed mechanism and the variable-pitch screw insertion mechanism of C401 rapier loom manufactured by Vamatex Corp in Italy.The results show that the proposed mechanism can meet the requirements of inserting wefts.
基金Supported by Zhejiang Province Foundation for Distinguished Young Scholars of China(Grant No.LR18E050003)National Natural Science Foundation of China(Grant Nos.51975523,51475424,51905481)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906).
文摘Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.
基金Supported by National Natural Science Foundation of China(Grant No.51775475).
文摘The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent characteristics.However,little work has been devoted to the actuator selection and placement that best satisfy the system's functional requirements during concept design.In this study,a unified approach for synthesizing the actuation spaces of both rigid and flexure parallel mechanisms has been presented,and all possible combinations of inputs could be obtained,laying a theoretical foundation for the subsequent optimization of inputs.According to the linear independence of actuation space and constraint space of the lower-mobility parallel mechanism,a general expression of actuation spaces in the format of screw systems is deduced,a unified synthesis process for the lower-mobility parallel mechanism is derived,and the efficiency of the method is validated with two selective examples based on screw theory.This study presents a theoretical framework for the input selection problems of parallel mechanisms,aiming to help designers select and place actuators in a correct and even optimal way after the configuration design.
基金Supported by National Natural Science Foundation of China(Grant Nos.52065053,51875458)Natural Science Foundation of Inner Mongolia(Grant No.2020BS05003)Inner Mongolia Science and Technology Project(Grant No.2020GG0288).
文摘The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.
基金Project(51975012)supported by the National Natural Science Foundation of ChinaProject(Z1511000003150138)supported by the Beijing Nova Program,China+1 种基金Project(Z191100001119010)supported by the Shanghai Sailing Program,ChinaProject(2018ZX04033001-003)supported by the National Science and Technology Major Project,China。
文摘The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period.
文摘By rigidizing the input joints, all possible combinations of drive selecting for the 4-PPPS parallel mechanism are analyzed based on the screw theory in this paper, and the five of them are proved to be reasonable. Then choosing the one as mechanical actuators, the workspace of the 4-PPPS parallel mechanism is deduced according to the rational input scheme. Finally the rationality of input scheme for this mechanism is identified on the basis of the continuity of the workspace.
基金the National Natural Science Foundation of China(No.51575014,51505012)Youth Foundation of Standards&Metrology Research Institute(No.BJ2019S01).
文摘Ball screw mechanism(BSM)is an important force-motion transfer device which is used in high-precision machine tools such as the computer numerical control.Performance parameters such as contact angle,helix angle,and the pitch radius of the screw can greatly affect the transmission precision,and the transmission precision of the BSM are not yet well resolved.In this study,ball contact point motion model is derived to assess the influence of contact angle,helix angle,and the pitch radius of the screw on transmission precision under uniform motion of the BSM.For the purpose of verifying the kinematic characteristics of the contact points between the balls and raceways under a state of uniform motion,a kinematic model is developed and values are computed for a set of boundary conditions.Comparing the simulated data to measured data,the laws of motion for the ball contact points developed in this study are confirmed.Moreover,the effect of the screw velocity on contact angle,helix angle and the pitch radius of the screw directly affects the velocity of the nut.Under the accelerated and uniform motion state of the screw,larger angular velocity of the screw results in an increase in the displacement deviation of the nut,and these parameters of the nut are considered to improve the transmission precision of the BSM.The verification of the research results provides a new research method for the study of the precision retention of ball screw mechanism.
文摘This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the servo mechanism,and analyzes the mechanism of the servo device's implementation of the"positioning"func-tion on the control device.Intended to guide the continuous adjustment process in controlling the function/accuracy of actuator equipment and application debugging,ensuring the safe and stable operation of production equipment and facilities.
文摘Based on the analysis of the differential cushion damping system kinematic relation and using principle of virtual work, a new kinematic function expression is established which is between six ball-screws and cushion components. At last the relationship between ball-screw force and attitude is intreduced.
基金Supported by the National Natural Science Foundation of China (50375071)the Jiangsu Province Key Lab on Digital Manufacture Project (HGDML-0604)~~
文摘The analytical formulations of the velocity and the acceleration of a 2-DOF spherical parallel mechanism are derived by the screw theory. Based on building its dynamics model by the principle of virtual work and reciprocal product of the screw, the equation of the motor moment is obtained. Through the transformation of dynamics model, the configuration space method of the dynamics equation and the corresponding coefficients are presented. Finally, the result of an example shows that the inertia moment and the gravity play a more important role than the coriolis and centrifugal moment, and the former is ten times of the latter in the magnitude. So, the latter can be neglected only when the velocity of mechanism is very slow.
基金supported by National Natural Science Foundation of China (Grant No. 50875227)
文摘The existence of coupling makes the parallel mechanism possess some special advantages over the serial mechanism, while it is just the coupling that brings about the parallel mechanism some limitations, such as complex workspace, high nonlinear relationship between input and output, difficulties in static and dynamic analysis, and the development of control system, which restricts its application fields. The decoupled parallel mechanism is currently one of the research focuses of the mechanism fields, while the study on the different characteristics between the deeoupled and coupled parallel mechanisms has not been reported. Therefore, this paper performs the systematic comparative analysis of the 3-RPUR and the 3-CPR parallel mechanisms. The features of the two mechanisms are described and their movement forms are analyzed with screw theory. The inverse and forward displacement solutions are solved and the Jacobian matrices are obtained. According to the Jacobian matrices and by using the theory of physical model of the solution space, the workspace, dexterity, velocity, payload capability, and stiffness of the mechanisms are analyzed with plotting the indices atlases. The research results prove that the effects of the coupling on the parallel mechanism are double-side, and then the adoption of the decoupled parallel mechanism should be determined by the requirements of the concrete application situation. The contents of this paper should be useful for the type synthesis and practical application of the parallel mechanism.
基金supported by National Natural Science Foundation of China (Grant No. 50875227)
文摘It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.