Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize th...Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.展开更多
This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can imp...This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.展开更多
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金This work was supported by National Natural Science Foundation of China (No.60372066)
文摘Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.
文摘This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.