In this paper, we investigate the connectedness of G-proper efficient solution set for multiobjective programming problem. It is shown that the G-proper efficient solution set is connected if objective functions are c...In this paper, we investigate the connectedness of G-proper efficient solution set for multiobjective programming problem. It is shown that the G-proper efficient solution set is connected if objective functions are convex. A sufficient condition for the connectedness of G-proper efficient solution set is established when objective functions are strictly quasiconvex.展开更多
In this note, we prove that the efficient solution set for a vector optimization problem with a continuous, star cone-quasiconvex objective mapping is connected under the assumption that the ordering cone is a D-cone....In this note, we prove that the efficient solution set for a vector optimization problem with a continuous, star cone-quasiconvex objective mapping is connected under the assumption that the ordering cone is a D-cone. A D-cone includes any closed convex pointed cones in a normed space which admits strictly positive continuous linear functionals.展开更多
In this paper, stability results of solution mappings to perturbed vector generalized system are studied. Firstly, without the assumption of monotonicity, the Painleve-Kuratowski convergence of global efficient soluti...In this paper, stability results of solution mappings to perturbed vector generalized system are studied. Firstly, without the assumption of monotonicity, the Painleve-Kuratowski convergence of global efficient solution sets of a family of perturbed problems to the corresponding global efficient solution set of the generalized system is obtained, where the perturbations are performed on both the objective function and the feasible set. Then, the density and Painleve-Kuratowski convergence results of efficient solution sets are established by using gamma convergence, which is weaker than the assumption of continuous convergence. These results extend and improve the recent ones in the literature.展开更多
基金This work is supported by Research Foundation of the Education Departm entof Zhejiang Province(2 0 0 10 2 80 )
文摘In this paper, we investigate the connectedness of G-proper efficient solution set for multiobjective programming problem. It is shown that the G-proper efficient solution set is connected if objective functions are convex. A sufficient condition for the connectedness of G-proper efficient solution set is established when objective functions are strictly quasiconvex.
基金Supported by the National Natural Science Foundation of China(No.10471032)the Excellent Young Teachers Program of the Ministry of Education of China
文摘In this note, we prove that the efficient solution set for a vector optimization problem with a continuous, star cone-quasiconvex objective mapping is connected under the assumption that the ordering cone is a D-cone. A D-cone includes any closed convex pointed cones in a normed space which admits strictly positive continuous linear functionals.
基金Supported by the National Natural Science Foundation of China(No.11431004.11471059.11401058)the Basic and Advanced Research Project of Chongqing(cstc2017jcyj AX0382,cstc2015shmszx30004)+1 种基金the Program for University Innovation Team of Chongqing(CXTDX201601022)the Education Committee Project Foundation of Bayu Scholar
文摘In this paper, stability results of solution mappings to perturbed vector generalized system are studied. Firstly, without the assumption of monotonicity, the Painleve-Kuratowski convergence of global efficient solution sets of a family of perturbed problems to the corresponding global efficient solution set of the generalized system is obtained, where the perturbations are performed on both the objective function and the feasible set. Then, the density and Painleve-Kuratowski convergence results of efficient solution sets are established by using gamma convergence, which is weaker than the assumption of continuous convergence. These results extend and improve the recent ones in the literature.