期刊文献+
共找到51,344篇文章
< 1 2 250 >
每页显示 20 50 100
Prussian Blue Analogue‑Templated Nanocomposites for Alkali‑Ion Batteries:Progress and Perspective
1
作者 Jian‑En Zhou Yilin Li +1 位作者 Xiaoming Lin Jiaye Ye 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期216-261,共46页
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion... Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality. 展开更多
关键词 Prussian blue analogues Self-sacrificial template Lithium-ion batteries Sodium-ion batteries Potassium-ion batteries
下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
2
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 Catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
下载PDF
Aligned Ion Conduction Pathway of Polyrotaxane‑Based Electrolyte with Dispersed Hydrophobic Chains for Solid‑State Lithium–Oxygen Batteries
3
作者 Bitgaram Kim Myeong‑Chang Sung +4 位作者 Gwang‑Hee Lee Byoungjoon Hwang Sojung Seo Ji‑Hun Seo Dong‑Wan Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期169-186,共18页
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the... A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs. 展开更多
关键词 Solid polymer electrolyte Lithium-oxygen batteries Polyrotaxane ion conductivity Hydrophobic chain
下载PDF
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
4
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte High voltage Layered oxide cathode Flame retardant
下载PDF
From waste to wealth:Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries
5
作者 Zhonghua Lu Jun Shen +5 位作者 Xin Zhang Lingcong Chao Liang Chen Ding Zhang Tao Wei Shoudong Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期464-475,共12页
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati... Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR. 展开更多
关键词 coal tar residue carbon materials ANODE potassium-ion batteries high value-added
下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
6
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
下载PDF
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
7
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1)at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1)at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
下载PDF
Photo‑Energized MoS_(2)/CNT Cathode for High‑Performance Li–CO_(2)Batteries in a Wide‑Temperature Range
8
作者 Tingsong Hu Wenyi Lian +4 位作者 Kang Hu Qiuju Li Xueliang Cui Tengyu Yao Laifa Shen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期160-175,共16页
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine... Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency. 展开更多
关键词 Li-CO_(2)batteries Photo-energized Wide operation-temperature Kinetics MoS_(2)
下载PDF
Efficient and Stable Photoassisted Lithium‑Ion Battery Enabled by Photocathode with Synergistically Boosted Carriers Dynamics
9
作者 Zelin Ma Shiyao Wang +13 位作者 Zhuangzhuang Ma Juan Li Luomeng Zhao Zhihuan Li Shiyuan Wang Yazhou Shuang Jiulong Wang Fang Wang Weiwei Xia Jie Jian Yibo He Junjie Wang Pengfei Guo Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期440-454,共15页
Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.P... Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1)at 0.2 A g^(−1)under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems. 展开更多
关键词 Photoassisted lithium-ion batteries Bulk heterojunction Carrier dynamics TiO2 nanofiber Plasmonic metal nanocrystals
下载PDF
Constructing Donor–Acceptor‑Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li^(+)Migration in Quasi‑Solid‑State Battery
10
作者 Genfu Zhao Hang Ma +5 位作者 Conghui Zhang Yongxin Yang Shuyuan Yu Haiye Zhu Yongjiang Sun Hong Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期456-471,共16页
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-... Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system. 展开更多
关键词 Electronic modulation engineering Donor-acceptor-linked covalent organic frameworks Quasi-solid-state Li metal battery
下载PDF
Molecule‑Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery
11
作者 Qiqi Sun Zelong Gong +13 位作者 Tao Zhang Jiafeng Li Xianli Zhu Ruixiao Zhu Lingxu Wang Leyuan Ma Xuehui Li Miaofa Yuan Zhiwei Zhang Luyuan Zhang Zhao Qian Longwei Yin Rajeev Ahuja Chengxiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期404-423,共20页
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int... The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode. 展开更多
关键词 Anchoring effect Nonflammable gel electrolyte In situ cross-linked Electrode-electrolyte interface Li metal battery
下载PDF
Porous Organic Cage‑Based Quasi‑Solid‑State Electrolyte with Cavity‑Induced Anion‑Trapping Effect for Long‑Life Lithium Metal Batteries
12
作者 Wei-Min Qin Zhongliang Li +7 位作者 Wen‑Xia Su Jia‑Min Hu Hanqin Zou Zhixuan Wu Zhiqin Ruan Yue‑Peng Cai Kang Li Qifeng Zheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期376-386,共11页
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie... Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries. 展开更多
关键词 Porous organic cage Cavity-induced anion-trapping Quasi-solid-state electrolyte Homogeneous Li+flux Lithium metal battery
下载PDF
Co/Co_(7)Fe_(3)heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst forrechargeable zinc-air batteries
13
作者 Junkang Chen Yongyue Zhuang +3 位作者 Yanxin Qiao Yu Zhang Aihua Yuan Hu Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期476-487,共12页
Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree c... Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies. 展开更多
关键词 bifunctional electrocatalysts oxygen reduction reaction oxygen evolution reaction zinc-air battery metal/alloy carbon sphere
下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
14
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film Electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
下载PDF
Optimization Strategies of Na_(3)V_(2)(PO_(4))_(3) Cathode Materials for Sodium‑Ion Batteries
15
作者 Jiawen Hu Xinwei Li +4 位作者 Qianqian Liang Li Xu Changsheng Ding Yu Liu Yanfeng Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期204-251,共48页
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab... Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs. 展开更多
关键词 Sodium-ion batteries Na_(3)V_(2)(PO_(4))_(3) Cathode materials Electrochemical performance Optimization strategies
下载PDF
Battery Separators Functionalized with Edge-Rich MoS2/C Hollow Microspheres for the Uniform Deposition of Li2S in High-Performance Lithium-Sulfur Batteries 被引量:11
16
作者 Nan Zheng Guangyu Jiang +3 位作者 Xiao Chen Jiayi Mao Nan Jiang Yongsheng Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期104-118,共15页
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co... As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions. 展开更多
关键词 Edge-rich MoS2/C Hollow microspheres Li2S Lithium-sulfur BATTERIES
下载PDF
Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO_(4) batteries:Designing a unique cation/anion-co-workable dual-ion battery 被引量:7
17
作者 Yun-Feng Meng Hao-Jie Liang +6 位作者 Chen-De Zhao Wen-Hao Li Zhen-Yi Gu Meng-Xuan Yu Bo Zhao Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期166-171,I0005,共7页
With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs ha... With the increasing popularity of new en ergy electric vehicles,the dema nd for lithium-ion batteries(LIBs)has been growing rapidly,which will produce a large number of spent LIBs.Therefore,recycling of spe nt LIBs has become an urge nt task to be solved,otherwise it will inevitably lead to serious environmental pollution.Herein,a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO_(4) batteries.Along with such recycling process,a unique cathode composed of recycled LFP/graphite(RLFPG)with cation/anion-co-storage ability is designed for new-type dual-ion battery(DIB).As a result,the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance,such as an initial discharge capacity of 117.4 mA h g^(-1) at 25 mA g^(-1) and 78% capacity retention after 1000 cycles at 100 mA g^(-1).The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies.This work not only presents a farreaching significance for large-scale recycling of spent LIBs in the future,but also proposed a sustainable and econo mical method to design n ew-type sec on dary batteries as recycling of spe nt LIBs. 展开更多
关键词 Dual-ion batteries LiFePO_(4) GRAPHITE Spenr lithium-ion batteries RECYCLE
下载PDF
Hybrid battery integrated by Zn-air and Zn-Co3O4 batteries at cell level 被引量:2
18
作者 Ning Liu Honglu Hu +1 位作者 Xinxin Xu Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期375-383,共9页
The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power sup... The construction of Zn based hybrid battery through the combination of Zn-air and Zn-Co3O4 batteries at cell level is a feasible strategy to integrate high voltage,specific capacity and energy density in one power supply equipment.For Zn based hybrid battery,an efficient cathode material with high specific capacitance and excellent ORR,OER activities is a vital component,which determines its performance in great extent.In this work,with Co based coordination polymer as precursor,oxygen vacancy-rich Co3 O4 based cathode material is synthesized.In this material Co3O4 particles with the size about 20 to 35 nm reside evenly in mesoporous carbon matrix doped by nitrogen atoms.In OER,the overpotential of this cathode material is merely 330 m V.Its ORR proceeds with a typical four electron process with half wave achieving 0.76 V.If charge/discharge at 1 A·g^-1,specific capacitance of this cathode material is 254.4 mAh·g^-1.As current density increases to 20 A·g^-1,the specific capacitance still arrives at 122.5 mAh·g^-1 with nearly 50%retained.Based on attractive performance of this cathode material,Zn based hybrid battery is assembled.When discharge at 1 m A·cm-2,it presences two voltage platforms at 1.71 and 1.14 V.In this situation,specific capacitance reaches 790 m Ah·g^-1 with energy density 928 Wh·kg^-1.Hybrid battery shows promising stability after 300-cycle continuous test. 展开更多
关键词 Zn based battery Hybrid battery Oxygen vacancy ELECTROCATALYSIS CO3O4
下载PDF
Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion,lithium-metal and post-lithium-ion batteries for green and safe energy 被引量:2
19
作者 Yu Chen Shuzi Liu +4 位作者 Zixin Bi Zheng Li Fengyi Zhou Ruifen Shi Tiancheng Mu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期966-991,共26页
Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electroly... Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy. 展开更多
关键词 Green solvents Decomposition Sustainable chemistry Lithium-oxygen batteries Lithium-sulphur batteries Sodium-ion batteries
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
20
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部