期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Monotone Set-Valued Function Defined by Set-Valued Choquet Integral
1
作者 孙红霞 张强 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期241-245,共5页
Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structu... Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structural characteristics of set-valued function are defined and have been proven the same as those in the original set functions, such as null-additivity, weakly null-additivity, order continuity, strong order continuity and property(S). A counterexample shows that order continuity and strong order continuity of the original set functions are no longer kept in a monotone set-valued function when Choquet integrably bounded assumption is abandoned. Four kinds of absolute continuities are defined for set-valued function, and all been proven valid with respect to the original set functions. 展开更多
关键词 monotone set-valued function set-valued Choquet integral Choquet integral
下载PDF
局部凸分离空间上的Bartle积分 被引量:3
2
作者 乌仁其其格 罗成 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期34-40,共7页
提出了取值于局部凸空间的向量测度的p-变差与p-半变差的概念.设F是由Ω的子集作成的域,(X,σΡ)是局部凸分离空间,证明了从賦范空间到局部凸分离空间的有界线性算子的全体构成局部凸分离空间,有界的X值向量测度的全体也是局部凸分离空... 提出了取值于局部凸空间的向量测度的p-变差与p-半变差的概念.设F是由Ω的子集作成的域,(X,σΡ)是局部凸分离空间,证明了从賦范空间到局部凸分离空间的有界线性算子的全体构成局部凸分离空间,有界的X值向量测度的全体也是局部凸分离空间.在局部凸分离空间为序列完备的前提下证明了以上两个空间拓扑同构,进而在局部凸分离空间上定义了Bartle积分,并把Banach空间上的关于向量测度的某些结论推广到了局部凸分离空间. 展开更多
关键词 局部凸分离空间 p-变差 p-半变差 向量测度 bartle积分
下载PDF
Continuous solutions for fractional integral inclusion in locally convex topological space 被引量:1
3
作者 Rabha W.Ibrahim 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第2期175-183,共9页
The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the ... The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the single-valued problem will be based on the Leray- Schauder fixed point theorem. Moreover, the controllability of this solution is studied. 展开更多
关键词 Riemann-Liouville integral operator integral inclusion set-valued function
下载PDF
An Equivalent Condition for (K) Integrability of Fuzzy-valued Mappings 被引量:1
4
作者 李宝麟 张迪 《Northeastern Mathematical Journal》 CSCD 2007年第1期63-70,共8页
In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equival... In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1. 展开更多
关键词 fuzzy number fuzzy set-valued mapping McShang integral Pettis integral (K) integral
下载PDF
一个新的Bartle积分极限定理 被引量:3
5
作者 赵焕光 《数学学报(中文版)》 SCIE CSCD 北大核心 1999年第3期469-474,共6页
本文建立了一个新的Bartle积分极限定理,较好地解决了Bartle积分极限理论的主要问题。Bartle积分,(F)可积,(F)度量收敛。
关键词 bartle积分 几乎处处收敛 极限定理 向量测度
原文传递
连续函数空间C(Ω)上的算子和它的表示测度
6
作者 于素芬 《内蒙古大学学报(自然科学版)》 CAS CSCD 2000年第6期568-571,共4页
讨论了连续函数空间 C(Ω )上的 Bartle积分算子与其表示测度之间的关系 .证明了只要μ是非负 Borel测度 ,包含映射 J:C( Ω)→ L1( μ)就是绝对可和算子 ,同时也是 Pietsch积分算子 ,且‖J‖ as=‖J‖ pint=μ( Ω) .而 μ的正则性保... 讨论了连续函数空间 C(Ω )上的 Bartle积分算子与其表示测度之间的关系 .证明了只要μ是非负 Borel测度 ,包含映射 J:C( Ω)→ L1( μ)就是绝对可和算子 ,同时也是 Pietsch积分算子 ,且‖J‖ as=‖J‖ pint=μ( Ω) .而 μ的正则性保证了由 G( E) =χE定义的向量测度 G是 展开更多
关键词 bartle积分算法 表示测度 连续函数空间
下载PDF
Strong Solution of It Type Set-Valued Stochastic Differential Equation
7
作者 Jun Gang LI Yukio OGURA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第9期1739-1748,共10页
In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definit... In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definition of Aumann type Lebesgue integral and prove the measurability of the Lebesgue integral of set-valued stochastic processes with respect to time t. Then we shall present some new properties, especially prove an important inequality of set-valued Lebesgue integrals. Finally we shall prove the existence and the uniqueness of a strong solution to the It5 type set-valued stochastic differential equation. 展开更多
关键词 set-valued stochastic process set-valued Lebesgue integral set-valued stochastic differential equation strong solution
原文传递
Nonadditive Set Functions Defined by Aumann Fuzzy Integrals
8
作者 刘彦奎 刘宝碇 《Tsinghua Science and Technology》 SCIE EI CAS 2003年第1期37-42,共6页
A novel concept, called nonadditive set-valued measure, is first defined as a monotone and continuous set function. Then the interconnections between nonadditive set-valued measure and the additive set-valued measur... A novel concept, called nonadditive set-valued measure, is first defined as a monotone and continuous set function. Then the interconnections between nonadditive set-valued measure and the additive set-valued measure as well as the fuzzy measure are discussed. Finally, an approach to construct a nonadditive compact set-valued measure is presented via Aumann fuzzy integral. 展开更多
关键词 fuzzy measure nonadditive set-valued measure Aumann fuzzy integral
原文传递
关于集值Bartle积分新的极限定理
9
作者 毛志勇 李琳琳 +1 位作者 高菲菲 韩猛 《数学的实践与认识》 北大核心 2020年第7期263-272,共10页
给出集值Bartle积分一个新的定义,并进一步讨论了数值函数关于有界闭凸集值可数可加集值测度的积分的性质,建立了集值Bartle积分的新的极限定理.
关键词 向量测度 bartle积分 集值测度 集值测度的选择 集值bartle积分
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部