Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structu...Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structural characteristics of set-valued function are defined and have been proven the same as those in the original set functions, such as null-additivity, weakly null-additivity, order continuity, strong order continuity and property(S). A counterexample shows that order continuity and strong order continuity of the original set functions are no longer kept in a monotone set-valued function when Choquet integrably bounded assumption is abandoned. Four kinds of absolute continuities are defined for set-valued function, and all been proven valid with respect to the original set functions.展开更多
The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the ...The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the single-valued problem will be based on the Leray- Schauder fixed point theorem. Moreover, the controllability of this solution is studied.展开更多
In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equival...In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1.展开更多
In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definit...In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definition of Aumann type Lebesgue integral and prove the measurability of the Lebesgue integral of set-valued stochastic processes with respect to time t. Then we shall present some new properties, especially prove an important inequality of set-valued Lebesgue integrals. Finally we shall prove the existence and the uniqueness of a strong solution to the It5 type set-valued stochastic differential equation.展开更多
A novel concept, called nonadditive set-valued measure, is first defined as a monotone and continuous set function. Then the interconnections between nonadditive set-valued measure and the additive set-valued measur...A novel concept, called nonadditive set-valued measure, is first defined as a monotone and continuous set function. Then the interconnections between nonadditive set-valued measure and the additive set-valued measure as well as the fuzzy measure are discussed. Finally, an approach to construct a nonadditive compact set-valued measure is presented via Aumann fuzzy integral.展开更多
基金Sponsored by the National Natural Science Foundation of China (70771010)
文摘Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structural characteristics of set-valued function are defined and have been proven the same as those in the original set functions, such as null-additivity, weakly null-additivity, order continuity, strong order continuity and property(S). A counterexample shows that order continuity and strong order continuity of the original set functions are no longer kept in a monotone set-valued function when Choquet integrably bounded assumption is abandoned. Four kinds of absolute continuities are defined for set-valued function, and all been proven valid with respect to the original set functions.
文摘The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the single-valued problem will be based on the Leray- Schauder fixed point theorem. Moreover, the controllability of this solution is studied.
文摘In this paper, we first discuss the relationship between the McShane integral and Pettis integral for vector-valued functions. Then by using the embedding theorems for the fuzzy number space E^1, we give a new equivalent condition for (K) integrabihty of a fuzzy set-valued mapping F : [a, b] → E^1.
基金Supported by National Natural Science Foundation of China (Grant No. 10771010), PHR (IHLB), Research Fund of Beijing Educational Committee, ChinaGrant-in-Aid for Scientific Research 19540140, Japan
文摘In this paper, we shall firstly illustrate why we should introduce an It5 type set-valued stochastic differential equation and why we should notice the almost everywhere problem. Secondly we shall give a clear definition of Aumann type Lebesgue integral and prove the measurability of the Lebesgue integral of set-valued stochastic processes with respect to time t. Then we shall present some new properties, especially prove an important inequality of set-valued Lebesgue integrals. Finally we shall prove the existence and the uniqueness of a strong solution to the It5 type set-valued stochastic differential equation.
基金Supported by the National Natural Science Foundationof China ( No. 6 0 1740 49) and Sino- French JointL aboratory for Research in Com puter Science,Controland Applied Mathem atics ( L IAMA)
文摘A novel concept, called nonadditive set-valued measure, is first defined as a monotone and continuous set function. Then the interconnections between nonadditive set-valued measure and the additive set-valued measure as well as the fuzzy measure are discussed. Finally, an approach to construct a nonadditive compact set-valued measure is presented via Aumann fuzzy integral.