One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven tha...A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven that the sequence generated by the method can strongly converge to the unique solution to the problem in the Hilbert spaces.展开更多
A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a...A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a special case , introduced and studied by Ding Xie-ping . The auxiliary variational principle technique was applied to solve this class of general multivalued mixed implicit quasi-variational inequalities. Firstly, a new auxiliary variational inequality with a proper convex , lower semicontinuous , binary functional was defined and a suitable functional was chosen so that its unique minimum point is equivalent to the solution of such an auxiliary variational inequality . Secondly , this auxiliary variational inequality was utilized to construct a new iterative algorithm for computing approximate solutions to general multivalued mixed implicit quasi-variational inequalities . Here , the equivalence guarantees that the algorithm can generate a sequence of approximate solutions. Finally, the existence of solutions and convergence of approximate solutions for general multivalued mixed implicit quasi-variational inequalities are proved. Moreover, the new convergerce criteria for the algorithm were provided. Therefore, the results give an affirmative answer to the open question raised by M. A . Noor, and extend and improve the earlier and recent results for various variational inequalities and complementarity problems including the corresponding results for mixed variational inequalities, mixed quasi-variational inequalities and quasi-complementarity problems involving the single-valued and set- valued mappings in the recent literature .展开更多
By applying the auxiliary variational principle technique, the existence of solutions for a new class of generalized mixed implicit quasi-variational-like inequalities and the convergence criteria of a new iterative a...By applying the auxiliary variational principle technique, the existence of solutions for a new class of generalized mixed implicit quasi-variational-like inequalities and the convergence criteria of a new iterative algorithm to compute approximate solutions are proved in Hilbert spaces. The obtained result is a improvement over and generalization of the main theorem proposed by Ding.展开更多
This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose ...This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose the closed relationships between Henig globally efficiency of generalized conepreinvex set-valued optimization problem and Henig globally efficiency of a kind of vector variational inequality.展开更多
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems...A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings展开更多
A new class of generalized nonlinear implicit variational-like inequality problems (for short, GNIVLIP) in the setting of locally convex topological vector spaces is introduced and studied in this paper. Under suita...A new class of generalized nonlinear implicit variational-like inequality problems (for short, GNIVLIP) in the setting of locally convex topological vector spaces is introduced and studied in this paper. Under suitable conditions, some existence theorems of solutions for (GNIVLIP) are presented by using some fixed point theorems.展开更多
A predict_correct projection method is presented for solving monotone variant variational inequalities, which could exploit the advantages and overcome the difficulties of both explicit and implicit projection methods.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.
基金supported by the Key Program of National Natural Science Foundation of China(No.70831005)the National Natural Science Foundation of China(No.10671135)the Fundamental Research Funds for the Central Universities(No.2009SCU11096)
文摘A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven that the sequence generated by the method can strongly converge to the unique solution to the problem in the Hilbert spaces.
基金the Teaching and Research Award Fund for Qustanding Young Teachers in Higher Education Institutions of MOE, PRC the Special Funds for Major Specialities of Shanghai Education Committee+1 种基金the Department Fund of ScienceTechnology in Shanghai Higher Educ
文摘A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a special case , introduced and studied by Ding Xie-ping . The auxiliary variational principle technique was applied to solve this class of general multivalued mixed implicit quasi-variational inequalities. Firstly, a new auxiliary variational inequality with a proper convex , lower semicontinuous , binary functional was defined and a suitable functional was chosen so that its unique minimum point is equivalent to the solution of such an auxiliary variational inequality . Secondly , this auxiliary variational inequality was utilized to construct a new iterative algorithm for computing approximate solutions to general multivalued mixed implicit quasi-variational inequalities . Here , the equivalence guarantees that the algorithm can generate a sequence of approximate solutions. Finally, the existence of solutions and convergence of approximate solutions for general multivalued mixed implicit quasi-variational inequalities are proved. Moreover, the new convergerce criteria for the algorithm were provided. Therefore, the results give an affirmative answer to the open question raised by M. A . Noor, and extend and improve the earlier and recent results for various variational inequalities and complementarity problems including the corresponding results for mixed variational inequalities, mixed quasi-variational inequalities and quasi-complementarity problems involving the single-valued and set- valued mappings in the recent literature .
文摘By applying the auxiliary variational principle technique, the existence of solutions for a new class of generalized mixed implicit quasi-variational-like inequalities and the convergence criteria of a new iterative algorithm to compute approximate solutions are proved in Hilbert spaces. The obtained result is a improvement over and generalization of the main theorem proposed by Ding.
基金supported by the Natural Science Foundation of China under Grant No.11361001Ministry of Education Science and technology key projects under Grant No.212204+1 种基金the Natural Science Foundation of Ningxia under Grant No.NZ12207the Science and Technology key project of Ningxia institutions of higher learning under Grant No.NGY2012092
文摘This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose the closed relationships between Henig globally efficiency of generalized conepreinvex set-valued optimization problem and Henig globally efficiency of a kind of vector variational inequality.
基金Project supported by the Natural Science Foundation of Sichuan Educational Commission (No.2003A081)
文摘A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings
基金Supported by the National Natural Science Foundation of China (Grant No.60804065)the Natural Science Foundation of Sichuan Provincial Education Department of China (Grant No.07ZA123)the Talent Development and Teaching Reform in Higher Education Project of Sichuan Province (Grant No.[2005]198)
文摘A new class of generalized nonlinear implicit variational-like inequality problems (for short, GNIVLIP) in the setting of locally convex topological vector spaces is introduced and studied in this paper. Under suitable conditions, some existence theorems of solutions for (GNIVLIP) are presented by using some fixed point theorems.
文摘A predict_correct projection method is presented for solving monotone variant variational inequalities, which could exploit the advantages and overcome the difficulties of both explicit and implicit projection methods.