With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup...With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.展开更多
To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave mode...To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.展开更多
基金The National Natural Science Foundation of China under contract No. 40266001
文摘With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.
基金supported by the National Natural Science Foundation of China(Grants No.51009018 and 51079024)the National Marine Environment Monitoring Center,State Oceanic Administration,P.R.China(Grant No.210206)
文摘To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.