This article analyzes the differential settlement of new and old roadbeds after widening and its characteristics based on a highway reconstruction and expansion project case study.The research proposes a subgrade sett...This article analyzes the differential settlement of new and old roadbeds after widening and its characteristics based on a highway reconstruction and expansion project case study.The research proposes a subgrade settlement control standard that states that the maximum differential settlement value should be less than 5 cm when the embankment fill height exceeds 20 m.Similarly,the maximum differential settlement value should be less than 10 cm when the embankment fill height does not exceed 20 m.The findings of the study can provide a useful reference for the design of roadbed widening in highway reconstruction and expansion projects.展开更多
In order to ensure that the tunnel deformation and surface settlement are controlled within the allowable range during the construction process,the design unit has compiled technical measures and monitoring schemes fo...In order to ensure that the tunnel deformation and surface settlement are controlled within the allowable range during the construction process,the design unit has compiled technical measures and monitoring schemes for ground settlement control of this project.Based on the example of a shallow tunneling project on Subway line 8,this paper analyzes and discusses the shallow tunneling method in detail and puts forward corresponding technical measures for ground settlement control.展开更多
China's infrastructure has gradually achieved large-scale development,and transportation construction has also shifted from east to west,transitioning from plains to mountainous areas.High-fill embankments of diff...China's infrastructure has gradually achieved large-scale development,and transportation construction has also shifted from east to west,transitioning from plains to mountainous areas.High-fill embankments of different sizes in mountainous areas are unavoidable,and the settlement of high-fill embankments is usually the most concerned issue in high-fill projects.According to the current research of highway projects,most of the high embankments in mountainous areas are soil-rock mixed embankments or rock-filled embankments,and their post-construction settlements are directly related to construction technology and the type of filler used.In this paper,the problems in the settlement control of earth-filled embankment and related factors are analyzed in detail.The settlement control technology of high-fill embankment in high-cold and high-altitude areas is also discussed,so as to ensure the overall quality of high-fill embankment.展开更多
Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspe...Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.展开更多
文摘This article analyzes the differential settlement of new and old roadbeds after widening and its characteristics based on a highway reconstruction and expansion project case study.The research proposes a subgrade settlement control standard that states that the maximum differential settlement value should be less than 5 cm when the embankment fill height exceeds 20 m.Similarly,the maximum differential settlement value should be less than 10 cm when the embankment fill height does not exceed 20 m.The findings of the study can provide a useful reference for the design of roadbed widening in highway reconstruction and expansion projects.
文摘In order to ensure that the tunnel deformation and surface settlement are controlled within the allowable range during the construction process,the design unit has compiled technical measures and monitoring schemes for ground settlement control of this project.Based on the example of a shallow tunneling project on Subway line 8,this paper analyzes and discusses the shallow tunneling method in detail and puts forward corresponding technical measures for ground settlement control.
文摘China's infrastructure has gradually achieved large-scale development,and transportation construction has also shifted from east to west,transitioning from plains to mountainous areas.High-fill embankments of different sizes in mountainous areas are unavoidable,and the settlement of high-fill embankments is usually the most concerned issue in high-fill projects.According to the current research of highway projects,most of the high embankments in mountainous areas are soil-rock mixed embankments or rock-filled embankments,and their post-construction settlements are directly related to construction technology and the type of filler used.In this paper,the problems in the settlement control of earth-filled embankment and related factors are analyzed in detail.The settlement control technology of high-fill embankment in high-cold and high-altitude areas is also discussed,so as to ensure the overall quality of high-fill embankment.
基金supported by the Fundamental Research Funds for the Central Universities(2023JBZD004)the National Natural Science Foundation of China(U2034204,52078031)the Science and Technology Development Project of cccC Harbin Metro Investment and Construction Co.,Ltd.(ZJHD-FW-2018-01-086).
文摘Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.