期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:5
1
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG cascaded h-bridge converters Battery energy storage system Renewable energy integration
下载PDF
Finite-time robust control for transformerless H-bridge cascaded STATCOM with star configuration
2
作者 Xingyu Lv Bangjun Lei Shumin Fei 《Journal of Control and Decision》 EI 2021年第2期106-115,共10页
This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop contr... This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM. 展开更多
关键词 cascaded h-bridge converter transformerless STATCOM finite time robust control oscillations damping transient stability
原文传递
Hybrid Modular Smart Transformer for Asymmetrically Bidirectional Power Flow Operation
3
作者 Kangan Wang Youngjong Ko +3 位作者 Rongwu Zhu Siyu Wu Weimin Wu Marco Liserre 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1384-1398,共15页
The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have ... The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have the capability to operate in both directions.However,the reverse power is less as compared to the forward power,thus the design of ST with the same capacity in both directions increases the hardware cost and decreases the system efficiency.This paper proposes a Hybrid-modular-ST(H-ST),composed of a mixed use of single active bridge-based series resonant converter and dual active bridge instead of complete use of uni-or bi-directional converter adopted in the conventional solid-state-transformer.Based on the proposed H-ST,the impacts of power imbalance among cascaded modules in reverse operation mode are analyzed and then an effective solution based on reactive power compensation combined with the characteristics of the proposed architecture is adopted.The simulation and experimental results clearly validate the effectiveness and feasibility of the theoretical analyses. 展开更多
关键词 cascaded h-bridge dual-active bridge series resonant converter smart transformer(ST) three-stage architecture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部