With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop contr...This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM.展开更多
The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have ...The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have the capability to operate in both directions.However,the reverse power is less as compared to the forward power,thus the design of ST with the same capacity in both directions increases the hardware cost and decreases the system efficiency.This paper proposes a Hybrid-modular-ST(H-ST),composed of a mixed use of single active bridge-based series resonant converter and dual active bridge instead of complete use of uni-or bi-directional converter adopted in the conventional solid-state-transformer.Based on the proposed H-ST,the impacts of power imbalance among cascaded modules in reverse operation mode are analyzed and then an effective solution based on reactive power compensation combined with the characteristics of the proposed architecture is adopted.The simulation and experimental results clearly validate the effectiveness and feasibility of the theoretical analyses.展开更多
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
基金supported by Guizhou Provincial Science and Technology Foundation(No.QiankeheJzi[2015]2070,Qiankehejichu[2016]1064,Qiankehejichu[2017]1074,Qiankehejichu[2018]1068,Qiankehezhicheng[2018]2164)the Chinese National Natural Science Foundation under Grant No.61563011the Ph.D research fund of Guizhou Normal University under Grant No.11904-0514170High level talent research project of Guizhou Institute of Technology(No.XJGC20150405).
文摘This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM.
基金supported in part by National Key Research&Development Project of China(2017YFE0134300)in part by Shanghai 2022 Science and Technology Innovation Action Plan-Star Cultivation(Sailing Program)(22YF1415700)in part by the National Natural Science Foundation of China under Grant 52307215.
文摘The presence of renewable energy resources in LV distribution networks may lead to a distribution transformer,also known as a Smart Transformer(ST),experiencing the bidirectional power flow.Therefore,the ST must have the capability to operate in both directions.However,the reverse power is less as compared to the forward power,thus the design of ST with the same capacity in both directions increases the hardware cost and decreases the system efficiency.This paper proposes a Hybrid-modular-ST(H-ST),composed of a mixed use of single active bridge-based series resonant converter and dual active bridge instead of complete use of uni-or bi-directional converter adopted in the conventional solid-state-transformer.Based on the proposed H-ST,the impacts of power imbalance among cascaded modules in reverse operation mode are analyzed and then an effective solution based on reactive power compensation combined with the characteristics of the proposed architecture is adopted.The simulation and experimental results clearly validate the effectiveness and feasibility of the theoretical analyses.