Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe...Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.展开更多
A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct ...A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.展开更多
Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permane...Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy...This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.展开更多
Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disp...Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disposed of. In Burkina Faso, there are as yet no guidelines for the disposal of unused medicines in households. The aim of this study was to estimate the extent of household possession of unused or expired medicines, and to describe attitudes and disposal practices. Methods: This was a descriptive cross-sectional study covering households in the Ouagadougou commune conducted from June to August 2021. Two-stage stratified sampling was used: selection of Enumeration Zones (EZs) and selection of households, with each EZ comprising several households. Data collection was based on direct interviews using a structured questionnaire. Data were processed using Epi Info software version 7.2.4.0. Results: In total, 417 household residents were surveyed out of the planned 423 households, corresponding to a completion rate of 98.58% compared with the initial sample. Among the respondents, 79.62% had unused and/or expired medicines in their household. A total of 2562 drug packaging units were counted, for a total weight of 121.90 kg. Nearly 75% were aware that improper disposal was a danger to the environment. Some respondents kept their unused medicines at home until they expired (43.41%), and disposed of them mainly by throwing them in the household garbage (75.58%). The majority (79%) were in favor of the government setting up a take-back program for these medicines. Conclusion: The introduction of a take-back program for unused or out-of-date medicines will ensure safer disposal of medicines, and better protection for households and the environment.展开更多
Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (...Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (EUM). Improper disposal of expired and unused medicines is hazardous both to humans and the environment. Objective: This sought to measure patients’ knowledge, attitude, and practices on disposal methods of EUM. Methods: A cross-sectional study was carried out among 384 patients at three outpatient pharmacies at the University Teaching Hospitals (UTHs). The structured questionnaire was used to collect data and STAT version 15.1 was used to analyse the data. Results: 384 respondents participated in this study and, at some point, had EUM. In this study, 356 (92.7%) of the participants reported that they had never heard of a drug take-back system. Most of the participants 285 (74.2%) and 239 (62.2%) kept and donated their unused medicine, respectively. Additionally, 244 (63.5%), 212 (55.2%), and 176 (44.8%) of the participants disposed of expired medicines in the bin or garbage, flushed them in toilets or sinks, or burned them, respectively. Occupation was significantly associated with unsafe disposal of unused medicine [P-value = 0.019]. Conclusion and Relevance: Knowledge of safe disposal methods for EUM was good amongst most participants. However, used unsafe disposal methods. The majority of the participants exhibited positive attitude concerning safe disposal methods. This study highlights the need for drug-take-back program creation in Zambia.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric an...This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only w...The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only with the law of the sea but also with the principles of nuclear safety under international law.These principles serve as the overarching tenet of international and China’s domestic nuclear laws,applicable to nuclear facilities and activities.The principle of safety in nuclear activities is fully recognized in international and domestic laws,carrying broad legal binding force.Japan’s discharge of nuclear-contaminated water into the sea violates its obligations under the principle of safety in nuclear activities,including commitments to optimum protection,as low as reasonably practicable,and prevention.The Japanese government and the International Atomic Energy Agency(IAEA)have breached the obligation of optimum protection by restricting the scope of assessments,substituting core concepts,and shielding dissenting views.In the absence of clear radiation standards,they have acted unilaterally without fulfilling the obligation as low as reasonably practicable principle.The discharge of Fukushima nuclear-contaminated water poses an imminent and unpredictable risk to all countries worldwide,including Japanese residents.Japan and the IAEA should fulfill their obligations under international law regarding disposal,adhering to the principles of nuclear safety,including optimum protection,the obligation as low as reasonably practicable,and prevention through multilateral cooperation.Specifically,the obligation to provide optimum protection should be implemented by re-evaluating the most reliable disposal technologies and methods currently available and comprehensively assessing various options.The standard of the obligation as low as reasonably practicable requires that the minimization of negative impacts on human health,livelihoods,and the environment should not be subordinated to considerations of cutting costs and expenses.Multilateral cooperation should be promoted through the establishment of sound multilateral long-term monitoring mechanisms for the discharge of nuclear-contaminated water,notification and consultation obligations,and periodic assessments.These obligations under international law were fulfilled after the accidents at the Three Mile Island and Chernobyl nuclear power plants.The implications of the principles of nuclear safety align with the concept of building a community of shared future for nuclear safety advocated by China.In cases of violations of international law regarding the disposal of nuclear-contaminated water that jeopardize the concept of a community of a shared future for nuclear safety,China can also rely on its own strength to promote the implementation of due obligations through self-help.展开更多
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine...With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.展开更多
Total nitrogen was an important indicator for characterizing eutrophication of polluted water. Although the use of water quality online monitoring instrument can monitor water quality changes in real time, the degree ...Total nitrogen was an important indicator for characterizing eutrophication of polluted water. Although the use of water quality online monitoring instrument can monitor water quality changes in real time, the degree of intelligence was low, so it was urgent to predict the water quality and take precautions in advance. A predictive model for total nitrogen levels in a sewage treatment plant utilizing the Anaerobic-Anoxic-Oxic (AAO) process was investigated in this paper. This model demonstrated significant practical application value. Based on the ARIMA (Autoregressive Integrated Moving Average) model and taking into account the impact of Biochemical Oxygen Demand (BOD), a prediction model for effluent total nitrogen was developed. However, the initial results exhibited significant deviations. To address this issue, seasonal factors were further considered. Then, the dataset was divided into winter and Non-winter sub-samples, leading to a reconstruction of the prediction model. Additionally, in developing the Non-winter prediction model, life cycle considerations were incorporated, and consequently, a SARIMA (Seasonal Autoregressive Integrated Moving Average) model was established. The predicting deviation associated with both the winter and Non-winter forecasting models showed a significant reduction.展开更多
[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic mo...[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic moving bed biofilm reactor (A 2O-MBBR) was proposed to analyze and study its operating effect and influencing factors. [Results] The A^(2)O-MBBR mode had good COD removal efficiency and nitrogen and phosphorus removal performance, and the water quality index of the effluent met the Class A standard of GB181918-2002. This mode is suitable for treating rural domestic sewage, and has high treatment effects in different operating periods. In spring, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS reached (83.53 ± 2.15)%, (89.44 ± 4.97)%, (67.36±18.53)%, (88.22±11.21)% and (91.73±2.25)%, respectively;In the autumn period, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS were (83.49±2.64)%, (89.26±9.19)%, (66.05±17.00)%, (87.48±9.68)%, and (91.13±2.35)%. [Conclusions] This study provides theoretical reference and technical support for the popularization and application of A^(2)O-MBBR integrated process.展开更多
In order to realize the OY Smelting Furnace disposal of solid waste,municipal waste,form a model of steel enterprises and urban integration,through the production practice of smelting furnace,analyzes the mechanism of...In order to realize the OY Smelting Furnace disposal of solid waste,municipal waste,form a model of steel enterprises and urban integration,through the production practice of smelting furnace,analyzes the mechanism of solid waste disposal,and proposed the disposal of solid waste desulfurization agent and disposal method:According to the theory to guide the actual production process,the test ton of iron with 10-15kg of desulfurizer in the production process does not affect the quality of molten iron and slag quality.展开更多
Objective:To ascertain the level of intestinal parasites vis-a-vis the quality of housing and water supply,and sanitary conditions among the people of Kuraje village in Zamfara state. Methods:The study was cross secti...Objective:To ascertain the level of intestinal parasites vis-a-vis the quality of housing and water supply,and sanitary conditions among the people of Kuraje village in Zamfara state. Methods:The study was cross sectional in nature.Individual households were selected using systematic random sampling methods and pre-tested questionnaires were administered to all the members of each household.Stool samples were collected and processed using standard laboratory procedures.Housing conditions,sources of water and sanitary conditions of the households were also inspected.Results were analysed using Epi Info 2006 model.Results: The prevalence of intestinal parasites was 67.0%(347/519).72.3%(251/347),17.0%(59/347),and 10.7%(37/347) had one,two and three or more parasites,respectively.The associated factors with intestinal parasites were poor housing and sanitary conditions,lack of potable water and illiteracy.The commonest parasites encountered were hookworm(22.0%),Ascaris lumbricoides (18.5%),and Strongyloides stercoralis(15.6%) while the least common was Enterobius vermicularis (1.6%).Others were Giardia lamblia(5.7%),Hymenolepsis nana(5.0%),Trichuris trichiura(8.8%), Entamoeba histolytica(14.4%) and Schistosoma mansoni(8.4%).Conclusions:The infection rate of intestinal parasites in Kuraje village is high.More efforts should be intensified towards improvement in sanitary and housing standards,supply of potable water and institution of a more comprehensive literacy programme for the people of the community.展开更多
Rural domestic sewage treatment is an important part of the rural revitalization strategy and a key action to build a livable, livable and beautiful countryside. This paper composes and summarizes the relevant studies...Rural domestic sewage treatment is an important part of the rural revitalization strategy and a key action to build a livable, livable and beautiful countryside. This paper composes and summarizes the relevant studies on rural domestic sewage treatment from the governance techniques and modes of governance subjects and research perspectives, in order to provide reference for the implementation of rural revitalization strategy and rural domestic sewage treatment research and action implementation.展开更多
Pollution brought by rural domestic sewage has become increasingly serious, so it is imperative to fi gure out economical and efficient solutions. On the basis of comparison between rural domestic sewage treatment mea...Pollution brought by rural domestic sewage has become increasingly serious, so it is imperative to fi gure out economical and efficient solutions. On the basis of comparison between rural domestic sewage treatment means in China and abroad, actual conditions of countryside, current situation and features of domestic sewage, this paper adopted the compound ecological wetland system consisting of anaerobic and aerobic units, ecological floating bed and artifi cial wetland, so as to remove nitrogen and phosphorus efficiently, achieve the goal of low operation and construction cost and less land use.展开更多
1.Introduction The urban sewage treatment system,including sewage pipe networks and sewage treatment plants,is an important infrastructure to ensure urban social and economic operation.In the past few decades,due to t...1.Introduction The urban sewage treatment system,including sewage pipe networks and sewage treatment plants,is an important infrastructure to ensure urban social and economic operation.In the past few decades,due to the unremitting efforts of the Chinese government,the construction of China’s urban sewage treatment infrastructure has developed rapidly[1].展开更多
The rapid spread of the coronavirus disease(COVID-19)pandemic in over 200 countries poses a substantial threat to human health.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which causes COVID-19,can be d...The rapid spread of the coronavirus disease(COVID-19)pandemic in over 200 countries poses a substantial threat to human health.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which causes COVID-19,can be discharged with feces into the drainage system.However,a comprehensive understanding of the occurrence,presence,and potential transmission of SARS-CoV-2 in sewers,especially in community sewers,is still lacking.This study investigated the virus occurrence by viral nucleic acid testing in vent stacks,septic tanks,and the main sewer outlets of community where confirmed patients had lived during the early days of the epidemic in Wuhan,China.The results indicated that the risk of long-term emission of SARS-CoV-2 to the environment via vent stacks of buildings was low after confirmed patients were hospitalized.SARS-CoV-2 were mainly detected in the liquid phase,as opposed to being detected in aerosols,and its RNA in the sewage of septic tanks could be detected for only four days after confirmed patients were hospitalized.The surveillance of SARS-CoV-2 in sewage could be a sensitive indicator for the possible presence of asymptomatic patients in the community,though the viral concentration could be diluted more than ten times,depending on the sampling site,as indicated by the Escherichia coli test.The comprehensive investigation of the community sewage drainage system is helpful to understand the occurrence characteristics of SARS-CoV-2 in sewage after excretion with feces and the feasibility of sewage surveillance for COVID-19 pandemic monitoring.展开更多
During the long service period of a nuclear waste repository in crystalline rock,large earthquake(s)may occur nearby the repository site and coseismically alter the local stress field around pre-existing fractures wit...During the long service period of a nuclear waste repository in crystalline rock,large earthquake(s)may occur nearby the repository site and coseismically alter the local stress field around pre-existing fractures within the geological formation.The resulting fracture normal/shear displacements may lead to fracture opening and further promote the transport of leaked radionuclides into the groundwater system.Thus,it is of central importance to analyze the consequences of potential future earthquake(s)on the hydrogeological properties of a repository site for spent nuclear fuel disposal.Based on the detailed site characterization data of the repository site at Forsmark,Sweden,we conduct a three-dimensional(3D)seismo-hydro-mechanical simulation using the 3Dimensional Distinct Element Code(3DEC).We explicitly represent a primary seismogenic fault zone and its surrounding secondary fracture network associated with a power-law size scaling and a Fisher orientation distribution.An earthquake with a magnitude of M_(w)=5.6 caused by the reactivation of the primary fault zone is modeled by simulating its transient rupture propagating radially outwards from a predefined hypocenter at a specified rupture speed,with the faulting dynamics controlled by a strength weakening law.We model the coseismic response of the off-fault fracture network subject to both static and dynamic triggering effects.We further diagnose the distribution of fracture hydro-mechanical properties(e.g.mechanical/hydraulic aperture,hydraulic transmissivity)before and after the earthquake in order to quantify earthquakeinduced hydraulic changes in the fracture network.It is found that earthquake-induced fracture transmissivity changes tend to follow a power-law decay with the distance to the earthquake fault.Our simulation results and insights obtained have important implications for the long-term performance assessment of nuclear waste repositories in fractured crystalline rocks.展开更多
[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging....[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging. [Methods] Through the innovation and improvement of traditional soil sewage treatment technology, the physical, chemical and biological characteristics of soil for sewage purification are utilized to enhance the pollutant decomposition ability of soil microorganisms and maintain soil water permeability.[Results] It has no secondary pollution, and can effectively remove pollutants such as COD_(Cr), TN, TP, NH_3-N, etc. in sewage. [Conclusions] The operation and maintenance cost is low, and the land can be reused, while water and nutrients can be restored to the land.展开更多
基金supported by an Australian Government Research Training Program Scholarship offered to the first author of this study。
文摘Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices.
文摘A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.
基金study received financial support from the National Natural Science Foundation of China(No.U22B2065),EditChecks(https://editchecks.com.cn/)for providing linguistic assistance during the preparation of this manuscript.
文摘Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.
文摘Introduction: Not all medicines that pass-through consumers’ hands are used, and some often expire in households. These health products can be sources of accidental risks and pollution when they are not properly disposed of. In Burkina Faso, there are as yet no guidelines for the disposal of unused medicines in households. The aim of this study was to estimate the extent of household possession of unused or expired medicines, and to describe attitudes and disposal practices. Methods: This was a descriptive cross-sectional study covering households in the Ouagadougou commune conducted from June to August 2021. Two-stage stratified sampling was used: selection of Enumeration Zones (EZs) and selection of households, with each EZ comprising several households. Data collection was based on direct interviews using a structured questionnaire. Data were processed using Epi Info software version 7.2.4.0. Results: In total, 417 household residents were surveyed out of the planned 423 households, corresponding to a completion rate of 98.58% compared with the initial sample. Among the respondents, 79.62% had unused and/or expired medicines in their household. A total of 2562 drug packaging units were counted, for a total weight of 121.90 kg. Nearly 75% were aware that improper disposal was a danger to the environment. Some respondents kept their unused medicines at home until they expired (43.41%), and disposed of them mainly by throwing them in the household garbage (75.58%). The majority (79%) were in favor of the government setting up a take-back program for these medicines. Conclusion: The introduction of a take-back program for unused or out-of-date medicines will ensure safer disposal of medicines, and better protection for households and the environment.
文摘Background: Handling of medicines is a day-to-day activity by patients and many health care providers. However, multiple studies have brought to light inappropriate disposal methods for expired and unused medication (EUM). Improper disposal of expired and unused medicines is hazardous both to humans and the environment. Objective: This sought to measure patients’ knowledge, attitude, and practices on disposal methods of EUM. Methods: A cross-sectional study was carried out among 384 patients at three outpatient pharmacies at the University Teaching Hospitals (UTHs). The structured questionnaire was used to collect data and STAT version 15.1 was used to analyse the data. Results: 384 respondents participated in this study and, at some point, had EUM. In this study, 356 (92.7%) of the participants reported that they had never heard of a drug take-back system. Most of the participants 285 (74.2%) and 239 (62.2%) kept and donated their unused medicine, respectively. Additionally, 244 (63.5%), 212 (55.2%), and 176 (44.8%) of the participants disposed of expired medicines in the bin or garbage, flushed them in toilets or sinks, or burned them, respectively. Occupation was significantly associated with unsafe disposal of unused medicine [P-value = 0.019]. Conclusion and Relevance: Knowledge of safe disposal methods for EUM was good amongst most participants. However, used unsafe disposal methods. The majority of the participants exhibited positive attitude concerning safe disposal methods. This study highlights the need for drug-take-back program creation in Zambia.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
基金funded by the Research on National Greenhouse Gas Emission Reduction Obligations under the Carbon Peak and Carbon Neutral Commitment,General Program of Humanities and Social Sciences,Ministry of Education of China[Grant No.21YJA820010].
文摘The disposal of contaminated water from Japan’s Fukushima nuclear power plant is a significant international nuclear safety issue with considerable cross-border implications.This matter requires compliance not only with the law of the sea but also with the principles of nuclear safety under international law.These principles serve as the overarching tenet of international and China’s domestic nuclear laws,applicable to nuclear facilities and activities.The principle of safety in nuclear activities is fully recognized in international and domestic laws,carrying broad legal binding force.Japan’s discharge of nuclear-contaminated water into the sea violates its obligations under the principle of safety in nuclear activities,including commitments to optimum protection,as low as reasonably practicable,and prevention.The Japanese government and the International Atomic Energy Agency(IAEA)have breached the obligation of optimum protection by restricting the scope of assessments,substituting core concepts,and shielding dissenting views.In the absence of clear radiation standards,they have acted unilaterally without fulfilling the obligation as low as reasonably practicable principle.The discharge of Fukushima nuclear-contaminated water poses an imminent and unpredictable risk to all countries worldwide,including Japanese residents.Japan and the IAEA should fulfill their obligations under international law regarding disposal,adhering to the principles of nuclear safety,including optimum protection,the obligation as low as reasonably practicable,and prevention through multilateral cooperation.Specifically,the obligation to provide optimum protection should be implemented by re-evaluating the most reliable disposal technologies and methods currently available and comprehensively assessing various options.The standard of the obligation as low as reasonably practicable requires that the minimization of negative impacts on human health,livelihoods,and the environment should not be subordinated to considerations of cutting costs and expenses.Multilateral cooperation should be promoted through the establishment of sound multilateral long-term monitoring mechanisms for the discharge of nuclear-contaminated water,notification and consultation obligations,and periodic assessments.These obligations under international law were fulfilled after the accidents at the Three Mile Island and Chernobyl nuclear power plants.The implications of the principles of nuclear safety align with the concept of building a community of shared future for nuclear safety advocated by China.In cases of violations of international law regarding the disposal of nuclear-contaminated water that jeopardize the concept of a community of a shared future for nuclear safety,China can also rely on its own strength to promote the implementation of due obligations through self-help.
基金Supported by Research Foundation Ability Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities(2023KY2049).
文摘With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.
文摘Total nitrogen was an important indicator for characterizing eutrophication of polluted water. Although the use of water quality online monitoring instrument can monitor water quality changes in real time, the degree of intelligence was low, so it was urgent to predict the water quality and take precautions in advance. A predictive model for total nitrogen levels in a sewage treatment plant utilizing the Anaerobic-Anoxic-Oxic (AAO) process was investigated in this paper. This model demonstrated significant practical application value. Based on the ARIMA (Autoregressive Integrated Moving Average) model and taking into account the impact of Biochemical Oxygen Demand (BOD), a prediction model for effluent total nitrogen was developed. However, the initial results exhibited significant deviations. To address this issue, seasonal factors were further considered. Then, the dataset was divided into winter and Non-winter sub-samples, leading to a reconstruction of the prediction model. Additionally, in developing the Non-winter prediction model, life cycle considerations were incorporated, and consequently, a SARIMA (Seasonal Autoregressive Integrated Moving Average) model was established. The predicting deviation associated with both the winter and Non-winter forecasting models showed a significant reduction.
基金Supported by Scientific Research Project of Hunan Provincial Department of Education(22C0083)。
文摘[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic moving bed biofilm reactor (A 2O-MBBR) was proposed to analyze and study its operating effect and influencing factors. [Results] The A^(2)O-MBBR mode had good COD removal efficiency and nitrogen and phosphorus removal performance, and the water quality index of the effluent met the Class A standard of GB181918-2002. This mode is suitable for treating rural domestic sewage, and has high treatment effects in different operating periods. In spring, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS reached (83.53 ± 2.15)%, (89.44 ± 4.97)%, (67.36±18.53)%, (88.22±11.21)% and (91.73±2.25)%, respectively;In the autumn period, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS were (83.49±2.64)%, (89.26±9.19)%, (66.05±17.00)%, (87.48±9.68)%, and (91.13±2.35)%. [Conclusions] This study provides theoretical reference and technical support for the popularization and application of A^(2)O-MBBR integrated process.
文摘In order to realize the OY Smelting Furnace disposal of solid waste,municipal waste,form a model of steel enterprises and urban integration,through the production practice of smelting furnace,analyzes the mechanism of solid waste disposal,and proposed the disposal of solid waste desulfurization agent and disposal method:According to the theory to guide the actual production process,the test ton of iron with 10-15kg of desulfurizer in the production process does not affect the quality of molten iron and slag quality.
文摘Objective:To ascertain the level of intestinal parasites vis-a-vis the quality of housing and water supply,and sanitary conditions among the people of Kuraje village in Zamfara state. Methods:The study was cross sectional in nature.Individual households were selected using systematic random sampling methods and pre-tested questionnaires were administered to all the members of each household.Stool samples were collected and processed using standard laboratory procedures.Housing conditions,sources of water and sanitary conditions of the households were also inspected.Results were analysed using Epi Info 2006 model.Results: The prevalence of intestinal parasites was 67.0%(347/519).72.3%(251/347),17.0%(59/347),and 10.7%(37/347) had one,two and three or more parasites,respectively.The associated factors with intestinal parasites were poor housing and sanitary conditions,lack of potable water and illiteracy.The commonest parasites encountered were hookworm(22.0%),Ascaris lumbricoides (18.5%),and Strongyloides stercoralis(15.6%) while the least common was Enterobius vermicularis (1.6%).Others were Giardia lamblia(5.7%),Hymenolepsis nana(5.0%),Trichuris trichiura(8.8%), Entamoeba histolytica(14.4%) and Schistosoma mansoni(8.4%).Conclusions:The infection rate of intestinal parasites in Kuraje village is high.More efforts should be intensified towards improvement in sanitary and housing standards,supply of potable water and institution of a more comprehensive literacy programme for the people of the community.
文摘Rural domestic sewage treatment is an important part of the rural revitalization strategy and a key action to build a livable, livable and beautiful countryside. This paper composes and summarizes the relevant studies on rural domestic sewage treatment from the governance techniques and modes of governance subjects and research perspectives, in order to provide reference for the implementation of rural revitalization strategy and rural domestic sewage treatment research and action implementation.
基金Sponsored by National Natural Science Foundation of China(41263006,2014BAC04B02)Program of Jiangxi Provincial Department of Science and Technology(20124ACB01200,20122BBG70086,20113BCB24017,20133ACF60005,20123BBF61150)Program of Jiangxi Academy of Science(JAS(2013)NO.19-06,2012-YYB-01,2013-XTPH1-14,2013H003)
文摘Pollution brought by rural domestic sewage has become increasingly serious, so it is imperative to fi gure out economical and efficient solutions. On the basis of comparison between rural domestic sewage treatment means in China and abroad, actual conditions of countryside, current situation and features of domestic sewage, this paper adopted the compound ecological wetland system consisting of anaerobic and aerobic units, ecological floating bed and artifi cial wetland, so as to remove nitrogen and phosphorus efficiently, achieve the goal of low operation and construction cost and less land use.
基金funded by the National Key Research and Development Project of China(2021YFC3200700)the Major Consulting Research Project of the Chinese Academy of Engineering(2019-ZD-33).
文摘1.Introduction The urban sewage treatment system,including sewage pipe networks and sewage treatment plants,is an important infrastructure to ensure urban social and economic operation.In the past few decades,due to the unremitting efforts of the Chinese government,the construction of China’s urban sewage treatment infrastructure has developed rapidly[1].
基金funded by the projects of the Major Program of National Natural Science Foundation of China(52091543)Tsinghua University Spring Breeze Fund(20213080026)the Chinese Academy of Engineering(2020-ZD-15).
文摘The rapid spread of the coronavirus disease(COVID-19)pandemic in over 200 countries poses a substantial threat to human health.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which causes COVID-19,can be discharged with feces into the drainage system.However,a comprehensive understanding of the occurrence,presence,and potential transmission of SARS-CoV-2 in sewers,especially in community sewers,is still lacking.This study investigated the virus occurrence by viral nucleic acid testing in vent stacks,septic tanks,and the main sewer outlets of community where confirmed patients had lived during the early days of the epidemic in Wuhan,China.The results indicated that the risk of long-term emission of SARS-CoV-2 to the environment via vent stacks of buildings was low after confirmed patients were hospitalized.SARS-CoV-2 were mainly detected in the liquid phase,as opposed to being detected in aerosols,and its RNA in the sewage of septic tanks could be detected for only four days after confirmed patients were hospitalized.The surveillance of SARS-CoV-2 in sewage could be a sensitive indicator for the possible presence of asymptomatic patients in the community,though the viral concentration could be diluted more than ten times,depending on the sampling site,as indicated by the Escherichia coli test.The comprehensive investigation of the community sewage drainage system is helpful to understand the occurrence characteristics of SARS-CoV-2 in sewage after excretion with feces and the feasibility of sewage surveillance for COVID-19 pandemic monitoring.
文摘During the long service period of a nuclear waste repository in crystalline rock,large earthquake(s)may occur nearby the repository site and coseismically alter the local stress field around pre-existing fractures within the geological formation.The resulting fracture normal/shear displacements may lead to fracture opening and further promote the transport of leaked radionuclides into the groundwater system.Thus,it is of central importance to analyze the consequences of potential future earthquake(s)on the hydrogeological properties of a repository site for spent nuclear fuel disposal.Based on the detailed site characterization data of the repository site at Forsmark,Sweden,we conduct a three-dimensional(3D)seismo-hydro-mechanical simulation using the 3Dimensional Distinct Element Code(3DEC).We explicitly represent a primary seismogenic fault zone and its surrounding secondary fracture network associated with a power-law size scaling and a Fisher orientation distribution.An earthquake with a magnitude of M_(w)=5.6 caused by the reactivation of the primary fault zone is modeled by simulating its transient rupture propagating radially outwards from a predefined hypocenter at a specified rupture speed,with the faulting dynamics controlled by a strength weakening law.We model the coseismic response of the off-fault fracture network subject to both static and dynamic triggering effects.We further diagnose the distribution of fracture hydro-mechanical properties(e.g.mechanical/hydraulic aperture,hydraulic transmissivity)before and after the earthquake in order to quantify earthquakeinduced hydraulic changes in the fracture network.It is found that earthquake-induced fracture transmissivity changes tend to follow a power-law decay with the distance to the earthquake fault.Our simulation results and insights obtained have important implications for the long-term performance assessment of nuclear waste repositories in fractured crystalline rocks.
文摘[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging. [Methods] Through the innovation and improvement of traditional soil sewage treatment technology, the physical, chemical and biological characteristics of soil for sewage purification are utilized to enhance the pollutant decomposition ability of soil microorganisms and maintain soil water permeability.[Results] It has no secondary pollution, and can effectively remove pollutants such as COD_(Cr), TN, TP, NH_3-N, etc. in sewage. [Conclusions] The operation and maintenance cost is low, and the land can be reused, while water and nutrients can be restored to the land.