期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
CAS-based Water Resources Optimal Allocation and Dynamic Simulation for Sewage Irrigation Area
1
作者 Guo Si-qi Wang Shu-wen +6 位作者 Xiu Cheng Wang Si-wen Yuan Hang Li Xiao-wei Sha Yong-jing Liu Zi-ming Qiu Yue-tong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第4期73-85,共13页
Based on the theory of complex adaptive system(CAS),the optimal allocation model of water resources in sewage irrigation areas was established,which provided new ideas and application value for the rational utilizatio... Based on the theory of complex adaptive system(CAS),the optimal allocation model of water resources in sewage irrigation areas was established,which provided new ideas and application value for the rational utilization of agricultural production and waste water resources.The results demonstrated that the difference of crop energy capture mainly depended on the development stage.Waste water with a certain concentration was able to promote crop growth,while excessive concentration inhibited crop growth.The correlation between water absorption rate and leaf area index was close(R=0.9498,p<0.01).The amount of bad seeds increased at a speed of 34.7·d^-1,when system irrigated randomly in the seedling stage,while it tended to remain stable at a speed of 0.3·d^-1 after plants entering the mature stage which impacted the total yields of crops. 展开更多
关键词 complex adaptive system(CAS) sewage irrigation area water resource optimal allocation dynamic simulation
下载PDF
Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta,China 被引量:1
2
作者 黄冠星 孙继朝 +3 位作者 张英 荆继红 张玉玺 刘景涛 《Journal of Earth Science》 SCIE CAS CSCD 2011年第3期396-410,共15页
The aim of the present work is to investigate the distribution of arsenic(As) in sewage ir-rigation area,to deduce the migration and transformation mechanism of As in soil and groundwater,and to infer the source of ... The aim of the present work is to investigate the distribution of arsenic(As) in sewage ir-rigation area,to deduce the migration and transformation mechanism of As in soil and groundwater,and to infer the source of As in soil and groundwater.This study is carried out in a sewage irrigation area of the Pearl River Delta,China.Surface water samples,soil samples,and groundwater samples from sewage irrigation area were analyzed for As and other elements.As contents in water samples were analyzed by hydride generation-atomic fluorescence spectroscopy,and As fractionation in soil samples was extracted using a seven-step sequential extraction method according to a seven fraction scheme:water soluble,ion exchangeable,bound to carbonate,weakly bound to organic matter,associ-ated with oxides of iron(Fe) and manganese(Mn),strongly bound to organic matter,and the residual fraction.Waste water has content of As up to 16.8 μg/L in the study area.Soil has enriched As due to the irrigation of soil with waste water,and the total content of As in soil is about 0.7 times higher than the background value.Sequential extraction method reveals that the mean content of residual fraction in soil is more than 70%,releasable fraction(weakly organic fraction,Fe-Mn oxide fraction,and car-bonate fraction) is about 20%-30%,whereas strongly organic and mobile fractions(water soluble and ion exchangeable) are within 0.2%.In the soil profile,the contents of water soluble,ion exchangeable,and carbonate fraction decrease with the depth,whereas the contents of other fractions are irregular with the depth.Using correlation analysis,it is concluded that water soluble fraction is easy to change into ion exchangeable and carbonate fraction,ion exchangeable fraction is easy to change into carbon-ate and Fe-Mn oxide fraction,and carbonate fraction is easy to change into weakly organic and Fe-Mn oxide fraction in the soil of study area.Organic matter and(hydr)oxides of Fe and aluminium(Al) in soil play an important role in controlling the distribution and mobility of As in soil.As concentrations in groundwater range from 2.8 to 21.0 μg/L,and it is inferred that As from waste water and the release of high As sediment(soil and aquifer medium) are the main sources for high As groundwater in study area.Using cluster analysis,it is concluded that reducing ground-water with slightly alkaline is beneficial to en-richment of As in groundwater,and hydroxides of Fe,Mn,and Al also play a key role for the en-richment of As in groundwater of the study area. 展开更多
关键词 ARSENIC sewage irrigation area SOIL GROUNDWATER fraction.
原文传递
Temporal-spatial distribution and variability of cadmium contamination in soils in Shenyang Zhangshi irrigation area,China 被引量:8
3
作者 SUN Li-na ZHANG Yao-hua +3 位作者 SUN Tie-heng GONG Zong-qiang LIN Xin LI Hai-bo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1241-1246,共6页
Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochem... Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils. 展开更多
关键词 temporal-spatial distribution cadmium contamination of soil Zhangshi sewage irrigation area (ZSIA) Shenyang
下载PDF
Copper Residue in Animal Manures and the Potential Pollution Risk in Northeast China 被引量:17
4
作者 张丰松 李艳霞 +2 位作者 杨明 李帷 晏维金 《Journal of Resources and Ecology》 CSCD 2011年第1期91-96,共6页
A total of 224 animal manures and feeds, randomly sampled from different sizes of intensive farms in three northeastern provinces, were analyzed to determine Cu concentration. At the same time, the load of animal manu... A total of 224 animal manures and feeds, randomly sampled from different sizes of intensive farms in three northeastern provinces, were analyzed to determine Cu concentration. At the same time, the load of animal manure Cu on farmlands and loss to rivers in sewage irrigation areas of Liaoning Province was estimated. The results showed that the mean Cu concentrations in pig, cattle, and chicken feeds were 179.8, 16.6 and 20.8 mg kg-1, respectively. Cu concentrations in manures ranged from 1.5 to 1521.2 mg kg-1. The mean value of 642.1 mg kg-1 in pig manure was higher than the mean values of 65.6 mg kg-1 and 31.1 mg kg-1 in chicken and cattle manures, respectively. The load of animal manure Cu on farmland in the study area ranged from 12.3-35.4 kg km-2 annually. In particular, the Xiaolinghe area received a higher level than the other areas. The possible amount of manure Cu entering river water as a result of soil erosion was lower than 0.76 kg km-2. The highest loss rates were found in the south of Anshan and the west of Jinzhou. It is suggested that animal manures contain a high level of Cu. Long-term agricultural application of animal manure may increase the potential risk of Cu pollution in soil and surface water. 展开更多
关键词 animal manure CU sewage irrigation area agricultural application
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部