Sewer blockages are on the increase whilst water closet (WC) flush volumes are on the decrease. Furthermore, Water UK reported figures show that the actual number of properties affected by sewer flooding is on the ris...Sewer blockages are on the increase whilst water closet (WC) flush volumes are on the decrease. Furthermore, Water UK reported figures show that the actual number of properties affected by sewer flooding is on the rise. Sewer blockages can lead to sewer flooding of homes and collapse of sewers which impact negatively on social, economic and environmental factors, and therefore, they are not sustainable. Water conservation is required due to water stress but reduced water use results in less water to waste, which in turn reduces solids’ transfer in sewers. When considering reducing water usage through water conservation, these savings could be cancelled out by an increased population and the situation exacerbated by the impacts of climate change. There are issues in relation to varying design methods, a reliance on engineering judgement in sewer design, uncertainty relating to future water stress, and a lack of cross disciplinary design decision-making. Public health engineering solutions are needed to reduce the number of sewer blockages and the environmental impact of sewer flooding. This paper examines the fundamental research that have been carried out in the area of “solid transfer in sewers” resulting from “less water to waste” since the mid-20th Century. Contrary to existing literature, this paper identifies that, now more than ever, this type of research is needed to deal with the increased need for water conservation. To judge that solid transfer research is complete can be compared to supporting a statement that “water conservation is complete”.展开更多
In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment cou...In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.展开更多
文摘Sewer blockages are on the increase whilst water closet (WC) flush volumes are on the decrease. Furthermore, Water UK reported figures show that the actual number of properties affected by sewer flooding is on the rise. Sewer blockages can lead to sewer flooding of homes and collapse of sewers which impact negatively on social, economic and environmental factors, and therefore, they are not sustainable. Water conservation is required due to water stress but reduced water use results in less water to waste, which in turn reduces solids’ transfer in sewers. When considering reducing water usage through water conservation, these savings could be cancelled out by an increased population and the situation exacerbated by the impacts of climate change. There are issues in relation to varying design methods, a reliance on engineering judgement in sewer design, uncertainty relating to future water stress, and a lack of cross disciplinary design decision-making. Public health engineering solutions are needed to reduce the number of sewer blockages and the environmental impact of sewer flooding. This paper examines the fundamental research that have been carried out in the area of “solid transfer in sewers” resulting from “less water to waste” since the mid-20th Century. Contrary to existing literature, this paper identifies that, now more than ever, this type of research is needed to deal with the increased need for water conservation. To judge that solid transfer research is complete can be compared to supporting a statement that “water conservation is complete”.
文摘In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.