Male-killing is 1 of 4 known strategies that inherited parasitic endosymbionts have evolved to manipulate their host's reproduction. In early male-killing, infected male offspring are killed early in embryogenesis. W...Male-killing is 1 of 4 known strategies that inherited parasitic endosymbionts have evolved to manipulate their host's reproduction. In early male-killing, infected male offspring are killed early in embryogenesis. Within the Insecta, male-killing bacteria have been found in a wide range of hosts. The Coccinellidae families of beetles, better known as ladybirds, are particularly prone to male-killer invasion. In samples of the coccinellid, Coc- cinula crotchi, from Japan, a new male-killing bacterium was revealed by phenotypic assay. Molecular genetic analysis revealed the identity to be a tetracycline-sensitive Flavobac- terium that causes female-biased offspring sex ratio. Furthermore, that Flavobacterium strain was found to be closely related to the Flavobacterium causing male-killing in the congeneric Japanese coccinellid, Coccinula sinensis, which was collected from the same region. However, we found slightly different Flavobacterium strains infecting C. sinen- sis from regions with different environmental conditions. This may be an indication of horizontal transmission of male-killing Flavobacterium between these 2 ladybird spices. Finally, environmental conditions may affect the spread of male-killing bacteria among their hosts.展开更多
文摘Male-killing is 1 of 4 known strategies that inherited parasitic endosymbionts have evolved to manipulate their host's reproduction. In early male-killing, infected male offspring are killed early in embryogenesis. Within the Insecta, male-killing bacteria have been found in a wide range of hosts. The Coccinellidae families of beetles, better known as ladybirds, are particularly prone to male-killer invasion. In samples of the coccinellid, Coc- cinula crotchi, from Japan, a new male-killing bacterium was revealed by phenotypic assay. Molecular genetic analysis revealed the identity to be a tetracycline-sensitive Flavobac- terium that causes female-biased offspring sex ratio. Furthermore, that Flavobacterium strain was found to be closely related to the Flavobacterium causing male-killing in the congeneric Japanese coccinellid, Coccinula sinensis, which was collected from the same region. However, we found slightly different Flavobacterium strains infecting C. sinen- sis from regions with different environmental conditions. This may be an indication of horizontal transmission of male-killing Flavobacterium between these 2 ladybird spices. Finally, environmental conditions may affect the spread of male-killing bacteria among their hosts.