Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical prop...β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical properties of Si3N4 ceramics prepared using this method were compared with those obtained by hot pressing process. Well densified Si3N4 ceramics with finer and homogeneous microstructure and better mechanical properties were obtained in the case of the SPS technique at 200°C lower than that of hot pressing. The microhardness is 15.72 GPa, the bending strength is 716.46 MPa, and the fracture toughness is 7.03 MPa·m1/2.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high p...Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high product purity and no environmental pollution. When SHS combines with centrifugal casting, ceramic-lined compound copper pipe(CLCCP) can be produced, the inner surface of copper pipe can produce ceramic coatings having good wear and corrosion resistance. In order to increase the densification degree, combining strength and toughness of ceramic layer, the effects of additives such as SiO2, CrO3, Na2B4O7 and ZrO2 are researched, adding SiO2 and CrO3 in thermite, the densification degree of ceramic layer increases, adding Na2 B4 O7 in thermite can increase combining strength, adding ZrO2 in thermite can increase the toughness of ceramic layer. CLCCP is used in tubular billet crystallizer, having excellent service effects and decreasing the production cost of tubular billet.展开更多
FeAl composites with 21, 37 and 50 wt pct Fe3AlC0.5 were fabricated by a self-propagating high temperature synthesis (SHS) casting. Phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning ...FeAl composites with 21, 37 and 50 wt pct Fe3AlC0.5 were fabricated by a self-propagating high temperature synthesis (SHS) casting. Phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microhardness and bending strength of the composites were measured. The composites with 21 and 50 wt pct Fe3AlC0.5 mainly consisted of FeAl and FesAlC0.5 phases, whereas the composite with 37 wt pct Fe3AlC0.5 was composed of FeAl, Fe3AlC0.5 and graphite phases. The bonding of the reinforcement and the matrix was good. Hardness and bending strength of the composite with 37 wt pct Fe3AlC0.5 was lower than those of the 21 and 50 wt pct composites owing to the presence of the soft graphite phase.展开更多
The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for...The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.展开更多
This paper summarizes the work held at the Cancéropôle Ile-de-France's annual SHS research seminar on the theme:Pluridisciplinarity and methods for SHS research in thefield of cancer.After clarifying the...This paper summarizes the work held at the Cancéropôle Ile-de-France's annual SHS research seminar on the theme:Pluridisciplinarity and methods for SHS research in thefield of cancer.After clarifying the concepts of pluri-,inter-,and transdisciplinarité,it aimed to describe how this type of research is carried out in practice,addressing successively:the role of stakeholders and their respective positions,the need for a shared language,the various temporalities involved and task sharing,the interview and analysis methods as well as the implication of patient-researchers.It highlighted the personal qualities required to practice this type of research,such as psychologicalflexibility and adaptability,a strong desire for collaborative work,acceptance of risk,and a humble stance.展开更多
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
基金the National Natural Science Foundation of China (No.2001AA333080).
文摘β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical properties of Si3N4 ceramics prepared using this method were compared with those obtained by hot pressing process. Well densified Si3N4 ceramics with finer and homogeneous microstructure and better mechanical properties were obtained in the case of the SPS technique at 200°C lower than that of hot pressing. The microhardness is 15.72 GPa, the bending strength is 716.46 MPa, and the fracture toughness is 7.03 MPa·m1/2.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high product purity and no environmental pollution. When SHS combines with centrifugal casting, ceramic-lined compound copper pipe(CLCCP) can be produced, the inner surface of copper pipe can produce ceramic coatings having good wear and corrosion resistance. In order to increase the densification degree, combining strength and toughness of ceramic layer, the effects of additives such as SiO2, CrO3, Na2B4O7 and ZrO2 are researched, adding SiO2 and CrO3 in thermite, the densification degree of ceramic layer increases, adding Na2 B4 O7 in thermite can increase combining strength, adding ZrO2 in thermite can increase the toughness of ceramic layer. CLCCP is used in tubular billet crystallizer, having excellent service effects and decreasing the production cost of tubular billet.
基金the National Natural Science Foundation of China(No.50801064)the National 973 Project of China(NO.2007CB607601)the National 863 Project of China(No.2006AA03A219)for financial support.
文摘FeAl composites with 21, 37 and 50 wt pct Fe3AlC0.5 were fabricated by a self-propagating high temperature synthesis (SHS) casting. Phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microhardness and bending strength of the composites were measured. The composites with 21 and 50 wt pct Fe3AlC0.5 mainly consisted of FeAl and FesAlC0.5 phases, whereas the composite with 37 wt pct Fe3AlC0.5 was composed of FeAl, Fe3AlC0.5 and graphite phases. The bonding of the reinforcement and the matrix was good. Hardness and bending strength of the composite with 37 wt pct Fe3AlC0.5 was lower than those of the 21 and 50 wt pct composites owing to the presence of the soft graphite phase.
基金supported by the Natural Science Foundation of Qinghai Province(Grant No.2024-ZJ-987).
文摘The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.
文摘This paper summarizes the work held at the Cancéropôle Ile-de-France's annual SHS research seminar on the theme:Pluridisciplinarity and methods for SHS research in thefield of cancer.After clarifying the concepts of pluri-,inter-,and transdisciplinarité,it aimed to describe how this type of research is carried out in practice,addressing successively:the role of stakeholders and their respective positions,the need for a shared language,the various temporalities involved and task sharing,the interview and analysis methods as well as the implication of patient-researchers.It highlighted the personal qualities required to practice this type of research,such as psychologicalflexibility and adaptability,a strong desire for collaborative work,acceptance of risk,and a humble stance.